EXAMPLE 4 Write a rule given two terms

Two terms of an arithmetic sequence are $a_{8}=21$ and $a_{27}=97$. Find a rule for the nth term.

Solution

STEP 1 Write a system of equations using $a_{n}=a_{1}+(n-1) d$ and substituting 27 for n (Equation 1) and then 8 for n (Equation 2).

$$
a_{27}=a_{1}+(27-1) d \Longrightarrow 97=a_{1}+26 d \quad \text { Equation } 1
$$

$$
a_{8}=a_{1}+(8-1) d \quad 21=a_{1}+7 d \quad \text { Equation } 2
$$

STEP 2 Solve the system.

STEP 3 Find a rule for a_{n}.

$$
\begin{array}{rlrl}
76 & =\quad 19 d & & \text { Subtract. } \\
4 & =d & & \text { Solve for } d . \\
97 & =a_{1}+26(4) & & \text { Substitute for } d \text { in } \\
-7 & =a_{1} & & \text { Equation } 1 . \\
a_{n} & =a_{1}+(n-1) d & & \text { Write general rule. } \\
& =-7+(n-1) 4 & & \text { Substitute for } a_{1} \\
\text { and } d .
\end{array}
$$

Guided Practice

Write a rule for the \boldsymbol{n} th term of the arithmetic sequence. Then find $\boldsymbol{a}_{\mathbf{2 0}}$.
2. $17,14,11,8, \ldots$
3. $a_{11}=-57, d=-7$
4. $a_{7}=26, a_{16}=71$

ARITHMETIC SERIES The expression formed by adding the terms of an arithmetic sequence is called an arithmetic series. The sum of the first n terms of an arithmetic series is denoted by S_{n}. To find a rule for S_{n}, you can write S_{n} in two different ways and add the results.

$$
\begin{array}{cl}
S_{n}=a_{1} & +\left(a_{1}+d\right)+\left(a_{1}+2 d\right)+\cdots+a_{n} \\
S_{n}=a_{n} & +\left(a_{n}-d\right)+\left(a_{n}-2 d\right)+\cdots+a_{1} \\
\hline 2 S_{n}=\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right)+\cdots+\left(a_{1}+a_{n}\right)
\end{array}
$$

You can conclude that $2 S_{n}=n\left(a_{1}+a_{n}\right)$, which leads to the following result.

KEY CONCEPT

For Your Notebook

The Sum of a Finite Arithmetic Series

The sum of the first n terms of an arithmetic series is:

$$
S_{n}=n\left(\frac{a_{1}+a_{n}}{2}\right)
$$

In words, S_{n} is the mean of the first and nth terms, multiplied by the number of terms.

