EXAMPLE 4) Write a rule given two terms

Two terms of an arithmetic sequence are $a_8 = 21$ and $a_{27} = 97$. Find a rule for the *n*th term.

Solution

STEP 1 Write a system of equations using $a_n = a_1 + (n - 1)d$ and substituting 27 for *n* (Equation 1) and then 8 for *n* (Equation 2).

	$a_{27} = a_1 + (27 - 1)d \longrightarrow$	$97 = a_1 + 26d$	Equation 1
	$a_8 = a_1 + (8 - 1)d$	$21 = a_1 + 7d$	Equation 2
STEP 2	Solve the system.	76 = 19d	Subtract.
		4 = d	Solve for <i>d</i> .
		$97 = a_1 + 26(4)$	Substitute for <i>d</i> in Equation 1.
		$-7 = a_1$	Solve for <i>a</i> ₁ .
STEP 3	Find a rule for a_n .	$a_n = a_1 + (n-1)d$	Write general rule.
		= -7 + (n - 1)4	Substitute for <i>a</i> ₁ and <i>d</i> .
		= -11 + 4n	Simplify.

-

GUIDED PRACTICE for Examples 2, 3, and 4

Write a rule for the *n*th term of the arithmetic sequence. Then find a_{20} .

2. 17, 14, 11, 8, ... **3.**
$$a_{11} = -57$$
, $d = -7$ **4.** $a_7 = 26$, $a_{16} = 71$

ARITHMETIC SERIES The expression formed by adding the terms of an arithmetic sequence is called an **arithmetic series**. The sum of the first *n* terms of an arithmetic series is denoted by S_n . To find a rule for S_n , you can write S_n in two different ways and add the results.

$$S_n = a_1 + (a_1 + d) + (a_1 + 2d) + \dots + a_n$$

$$S_n = a_n + (a_n - d) + (a_n - 2d) + \dots + a_1$$

$$2S_n = (a_1 + a_n) + (a_1 + a_n) + (a_1 + a_n) + \dots + (a_1 + a_n)$$

You can conclude that $2S_n = n(a_1 + a_n)$, which leads to the following result.

KEY CONCEPT

For Your Notebook

The Sum of a Finite Arithmetic Series

The sum of the first *n* terms of an arithmetic series is:

$$S_n = n \left(\frac{a_1 + a_n}{2} \right)$$

In words, S_n is the mean of the first and *n*th terms, multiplied by the number of terms.