EXAMPLE 2 Write a rule for the *n*th term

Write a rule for the *n*th term of the sequence. Then find a_{15} .

a. 4, 9, 14, 19, . . .

```
b. 60, 52, 44, 36, . . .
```

Solution

a. The sequence is arithmetic with first term $a_1 = 4$ and common difference d = 9 - 4 = 5. So, a rule for the *n*th term is:

AVOID ERRORS

In the general rule for an arithmetic sequence, note that the common difference *d* is multiplied by n - 1, not *n*. $a_n = a_1 + (n-1)d$ Write general rule.= 4 + (n-1)5Substitute 4 for a_1 and 5 for d.= -1 + 5nSimplify.

The 15th term is $a_{15} = -1 + 5(15) = 74$.

b. The sequence is arithmetic with first term $a_1 = 60$ and common difference d = 52 - 60 = -8. So, a rule for the *n*th term is:

$a_n = \mathbf{a_1} + (n-1)\mathbf{d}$	Write general rule.
= 60 + (<i>n</i> - 1)(-8)	Substitute 60 for a_1 and -8 for d .
= 68 - 8n	Simplify.

The 15th term is $a_{15} = 68 - 8(15) = -52$.

EXAMPLE 3 Write a rule given a term and common difference

One term of an arithmetic sequence is $a_{19} = 48$. The common difference is d = 3.

a. Write a rule for the *n*th term. **b.** Graph the sequence.

Solution

a. Use the general rule to find the first term.

$a_n = a_1 + (n-1)d$	Write general rule.
$a_{19} = a_1 + (19 - 1)d$	Substitute 19 for <i>n</i> .
$48 = a_1 + 18(3)$	Substitute 48 for <i>a</i> ₁₉ and 3 for <i>d</i> .
$-6 = a_1$	Solve for <i>a</i> ₁ .

So, a rule for the *n*th term is:

$a_n = \mathbf{a_1} + (n-1)\mathbf{d}$	Write general rule.
= -6 + (<i>n</i> - 1)3	Substitute -6 for a_1 and 3 for d .
= -9 + 3n	Simplify.

b. Create a table of values for the sequence. The graph of the first 6 terms of the sequence is shown. Notice that the points lie on a line. This is true for *any* arithmetic sequence.

n	1	2	3	4	5	6
a _n	-6	-3	0	3	6	9

1	a _n	
		++
3-		• •
-	1	n
,	, •	