12.2 Analyze Arithmetic Sequences and Series

 a.1, a.2; P.4.A, P.4.B

Before
You worked with general sequences and series.

Why? You will study arithmetic sequences and series. So you can arrange a marching band, as in Ex. 64.

Key Vocabulary

- arithmetic sequence
- common difference
- arithmetic series

In an arithmetic sequence, the difference of consecutive terms is constant. This constant difference is called the common difference and is denoted by d.

EXAMPLE 1 Identify arithmetic sequences

Tell whether the sequence is arithmetic.
a. $-4,1,6,11,16, \ldots$
b. $3,5,9,15,23, \ldots$

Solution

Find the differences of consecutive terms.
a. $a_{2}-a_{1}=1-(-4)=5$
$a_{3}-a_{2}=6-1=5$
$a_{4}-a_{3}=11-6=5$
$a_{5}-a_{4}=16-11=5$

- Each difference is 5, so the sequence is arithmetic.

$$
\text { b. } \begin{aligned}
a_{2}-a_{1} & =5-3=2 \\
a_{3}-a_{2} & =9-5=4 \\
a_{4}-a_{3} & =15-9=6 \\
a_{5}-a_{4} & =23-15=8
\end{aligned}
$$

- The differences are not constant, so the sequence is not arithmetic.

Guided Practice for Example 1

1. Tell whether the sequence $17,14,11,8,5, \ldots$ is arithmetic. Explain why or why not.

KEY CONCEPT

For Your Notebook

Rule for an Arithmetic Sequence

Algebra The nth term of an arithmetic sequence with first term a_{1} and common difference d is given by:

$$
a_{n}=a_{1}+(n-1) d
$$

Example The nth term of an arithmetic sequence with a first term of 2 and common difference 3 is given by:

$$
a_{n}=2+(n-1) 3, \text { or } a_{n}=-1+3 n
$$

