65. TOWER OF HANOI In the puzzle called the Tower of Hanoi, the object is to use a series of moves to take the rings from one peg and stack them in order on another peg. A move consists of moving exactly one ring, and no ring may be placed on top of a smaller ring. The minimum number a_{n} of moves required to move n rings is 1 for 1 ring, 3 for 2 rings, 7 for 3 rings, 15 for 4 rings, and 31 for 5 rings. Find a formula for the sequence. What is the minimum number of moves required to move 6 rings? 7 rings? 8 rings?

66. MULTI-STEP PROBLEM The mean distance d_{n} (in astronomical units) of each planet (except Neptune) from the sun is approximated by the Titius-Bode rule, $d_{n}=0.3(2)^{n-2}+0.4$, where n is a positive integer representing the position of the planet from the sun.
a. Evaluate The value of n is 4 for Mars. Use the Titius-Bode rule to approximate the distance of Mars from the sun.
b. Convert One astronomical unit is equal to about 149,600,000 kilometers. How far is Mars from the sun in kilometers?
c. Graph Graph the sequence given by the Titius-Bode rule.
67. TAKS REASONING For a display at a sports store, you are stacking soccer balls in a pyramid whose base is an equilateral triangle. The number a_{n} of balls per layer is given by $a_{n}=\frac{n(n+1)}{2}$ where $n=1$ represents the top layer.
a. How many balls are in the fifth layer?
b. How many balls are in a stack with five layers?
c. Compare the number of balls in a layer of a triangular pyramid with the number of balls in the same layer of a square pyramid.
68. CHALLENGE Using the true statements from Exercises 59-62 on page 799 and the special formulas on page 797, find a formula for the number of balls in the top n layers of the pyramid from Exercise 67.

TAKS PRACTICE at classzone.com

MIXED REVIEW FOR TAKS

: REVIEW

Lesson 1.5;
TAKS Workbook

REVIEW

TAKS Workbook
69. TAKS PRACTICE The sale price, y, for a pair of tennis shoes is $\frac{2}{3}$ of the original price, x. Which equation represents this relationship? TAKS Obj. 1
(A) $y=\frac{2}{3} x$
(B) $y=\frac{3}{2} x$
(C) $y=x+\frac{2}{3}$
(D) $y=x-\frac{2}{3}$
70. TAKS PRACTICE Which equation represents a line with a slope of -5 and a y-intercept of 2? TAKS Obj. 3
(F) $y=-5 x+2$
(G) $y=-5 x+10$
(H) $y=2 x-5$
(J) $y=2 x+10$

