## Extension

Use arter Lesson 2.1

## Use Discrete and Continuous Functions =nas 2a.a

Goal Graph and classify discrete and continuous functions.

## Key Vocabulary <br> - discrete function <br> - continuous function

The graph of a function may consist of discrete, or separate and unconnected, points in a plane. The graph of a function may also be a continuous, or unbroken, line or curve or part of a line or curve.

## KEY CONCEPT

## Discrete and Continuous Functions

The graph of a discrete function consists of separate points.


The graph of a continuous function is unbroken.


## EXAMPLE 1 Graph and classify functions

Graph the function $f(x)=0.5 x+1$ for the given domain. Classify the function as discrete or continuous for the domain. Then identify the range.
a. Domain: $x=-2,0,2,4$
b. Domain: $x \geq-3$

## Solution

a. Make a table using the $x$-values in the domain.

| $x$ | -2 | 0 | 2 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 0 | 1 | 2 | 3 |



The graph consists of separate points, so the function is discrete. Its range is $0,1,2,3$.
b. Note that $f(x)$ is a linear function defined for $x \geq-3$, and that $f(-3)=-0.5$. So, the graph is the ray with endpoint $(-3,-0.5)$ that passes through all the points from the table in part (a).


The graph is unbroken, so the function is continuous. Its range is $y \geq-0.5$.

