KEY CONCEPT

Series and Summation Notation

When the terms of a sequence are added together, the resulting expression is a series. A series can be finite or infinite.

Finite series: $2+4+6+8$ Infinite series: $2+4+6+8+\cdots$
You can use summation notation to write a series. For example, the two series above can be written in summation notation as follows:
$2+4+6+8=\sum_{i=1}^{4} 2 i \quad 2+4+6+8+\cdots=\sum_{i=1}^{\infty} 2 i$
For both series, the index of summation is i and the lower limit of summation is 1 . The upper limit of summation is 4 for the finite series and ∞ (infinity) for the infinite series. Summation notation is also called sigma notation because it uses the uppercase Greek letter sigma, written Σ.

EXAMPLE 4 Write series using summation notation

Write the series using summation notation.
a. $25+50+75+\cdots+250$
b. $\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\cdots$

Solution

a. Notice that the first term is 25(1), the second is 25(2), the third is $25(3)$, and the last is 25(10). So, the terms of the series can be written as:

$$
a_{i}=25 i \text { where } i=1,2,3, \ldots, 10
$$

The lower limit of summation is 1 and the upper limit of summation is 10 .

- The summation notation for the series is $\sum_{i=1}^{10} 25 i$.
b. Notice that for each term the denominator of the fraction is 1 more than the numerator. So, the terms of the series can be written as:

$$
a_{i}=\frac{i}{i+1} \text { where } i=1,2,3,4, \ldots
$$

The lower limit of summation is 1 and the upper limit of summation is infinity.

- The summation notation for the series is $\sum_{i=1}^{\infty} \frac{i}{i+1}$.

Guided Practice for Example 4

Write the series using summation notation.
6. $5+10+15+\cdots+100$
7. $\frac{1}{2}+\frac{4}{5}+\frac{9}{10}+\frac{16}{17}+\cdots$
8. $6+36+216+1296+\cdots$
9. $5+6+7+\cdots+12$

