WRITING RULES If the terms of a sequence have a recognizable pattern, then you may be able to write a rule for the nth term of the sequence.

EXAMPLE 2 Write rules for sequences

WRITE RULES
If you are given only the first several terms of a sequence, there is no single rule for the nth term. For instance, the sequence $2,4,8, \ldots$ can be given by $a_{n}=2^{n}$ or $a_{n}=n^{2}-n+2$.

Describe the pattern, write the next term, and write a rule for the nth term of the sequence (a) $-1,-8,-27,-64, \ldots$ and (b) $0,2,6,12, \ldots$

Solution

a. You can write the terms as $(-1)^{3},(-2)^{3},(-3)^{3},(-4)^{3}, \ldots$. The next term is $a_{5}=(-5)^{3}=-125$. A rule for the nth term is $a_{n}=(-n)^{3}$.
b. You can write the terms as $0(1), 1(2), 2(3), 3(4), \ldots$ The next term is $f(5)=4(5)=20$. A rule for the nth term is $f(n)=(n-1) n$.

GRAPHING SEQUENCES To graph a sequence, let the horizontal axis represent the position numbers (the domain) and the vertical axis represent the terms (the range).

AVOID ERRORS Although the plotted points in Example 3 follow a curve, do not draw the curve because the sequence is defined only for integer values of n.

EXAMPLE 3 - TAKS REASONING: Multi-Step Problem

RETAIL DISPLAYS You work in a grocery store and are stacking apples in the shape of a square pyramid with 7 layers. Write a rule for the number of apples in each layer. Then graph the sequence.

Solution

STEP 1 Make a table showing the number of fruit in the first three layers.
Let a_{n} represent the number of apples in layer n.

Layer, n	1	2	3
Number of apples, a_{n}	$<$	2	2
$1=1^{2}$	$4=2^{2}$	$9=3^{2}$	

STEP 2 Write a rule for the number of apples in each layer. From the table, you can see that $a_{n}=n^{2}$.
STEP 3 Plot the points $(1,1),(2,4),(3,9), \ldots$, $(7,49)$. The graph is shown at the right.

GuIded Practice for Examples 2 and 3

4. For the sequence $3,8,15,24, \ldots$, describe the pattern, write the next term, graph the first five terms, and write a rule for the nth term.
5. WHAT IF? In Example 3, suppose there are 9 layers of apples. How many apples are in the 9th layer?
