WRITING RULES If the terms of a sequence have a recognizable pattern, then you may be able to write a rule for the *n*th term of the sequence.

EXAMPLE 2 Write rules for sequences

WRITE RULES

If you are given only the first several terms of a sequence, there is no *single* rule for the *n*th term. For instance, the sequence 2, 4, 8, . . . can be given by $a_n = 2^n$ or $a_n = n^2 - n + 2$.

Describe the pattern, write the next term, and write a rule for the *n*th term of the sequence (a) -1, -8, -27, -64, ... and (b) 0, 2, 6, 12,

Solution

- **a.** You can write the terms as $(-1)^3$, $(-2)^3$, $(-3)^3$, $(-4)^3$, The next term is $a_5 = (-5)^3 = -125$. A rule for the *n*th term is $a_n = (-n)^3$.
- **b.** You can write the terms as 0(1), 1(2), 2(3), 3(4), The next term is f(5) = 4(5) = 20. A rule for the *n*th term is f(n) = (n 1)n.

GRAPHING SEQUENCES To graph a sequence, let the horizontal axis represent the position numbers (the domain) and the vertical axis represent the terms (the range).

EXAMPLE 3) 🐟 TAKS REASONING: Multi-Step Problem

RETAIL DISPLAYS You work in a grocery store and are stacking apples in the shape of a square pyramid with 7 layers. Write a rule for the number of apples in each layer. Then graph the sequence.

Solution

STEP 1 Make a table showing the number of fruit in the first three layers. Let a_n represent the number of apples in layer n.

Layer, n	1	2	3
Number of apples, a _n	$1 = 1^2$	$4 = 2^2$	$9 = 3^2$

- *STEP 2* Write a rule for the number of apples in each layer. From the table, you can see that $a_n = n^2$.
- *STEP 3* **Plot** the points (1, 1), (2, 4), (3, 9), ..., (7, 49). The graph is shown at the right.

GUIDED PRACTICE for Examples 2 and 3

- **4.** For the sequence 3, 8, 15, 24, ..., describe the pattern, write the next term, graph the first five terms, and write a rule for the *n*th term.
- **5. WHAT IF?** In Example 3, suppose there are 9 layers of apples. How many apples are in the 9th layer?

AVOID ERRORS

i

Although the plotted points in Example 3 follow a curve, do *not* draw the curve because the sequence is defined only for integer values of *n*.