12.1
 a.2, 2A.2.A;
 P.4.A, P.4.B

Before
Now
You identified and wrote functions.

Why? You will recognize and write rules for number patterns. So you can find angle measures, as in Ex. 63.

Key Vocabulary

- sequence
- terms of a sequence
- series
- summation notation
- sigma notation

KEY CONCEPT

For Vour Notebook

Sequences

A sequence is a function whose domain is a set of consecutive integers. If a domain is not specified, it is understood that the domain starts with 1 . The values in the range are called the terms of the sequence.
$\begin{array}{llllllll}\text { Domain: } & 1 & 2 & 3 & 4 & \ldots & n\end{array} \quad$ The relative position of each term
A finite sequence has a limited number of terms. An infinite sequence continues without stopping.

Finite sequence: 2, 4, 6, $8 \quad$ Infinite sequence: $2,4,6,8, \ldots$
A sequence can be specified by an equation, or rule. For example, both sequences above can be described by the rule $a_{n}=2 n$ or $f(n)=2 n$.

EXAMPLE 1 Write terms of sequences

Write the first six terms of (a) $a_{n}=2 n+5$ and (b) $f(n)=(-3)^{n-1}$.

Solution

a. a_{1}	$=2(\mathbf{1})+5=7$	1st term	b.$f(\mathbf{1})$ $=(-3)^{1-1}=1$ 1st term a_{2} $=2(2)+5=9$ 2nd term $f(2)$$=(-3)^{2-1}=-3$		2nd term
a_{3}	$=2(3)+5=11$	3rd term	$f(3)$	$=(-3)^{3-1}=9$	
3rd term					
a_{4}	$=2(4)+5=13$	4th term	$f(4)$	$=(-3)^{4-1}=-27$	
4th term					
a_{5}	$=2(5)+5=15$	5th term	$f(5)=(-3)^{5-1}=81$	5th term	
a_{6}	$=2(6)+5=17$	6th term	$f(6)$	$=(-3)^{6-1}=-243$	
6th term					

Guided Practice for Example 1

Write the first six terms of the sequence.

1. $a_{n}=n+4$
2. $f(n)=(-2)^{n-1}$
3. $a_{n}=\frac{n}{n+1}$
