

Now

Big Ideas

- Analyze sequences
- 2 Find sums of series
- Our contract of the second second

KEY VOCABULARY

- sequence, *p. 794*
- terms of a sequence, p. 794
- series, *p. 796*
- summation notation, p. 796
- sigma notation, p. 796
- arithmetic sequence, *p. 802*common difference, *p. 802*
- arithmetic series, p. 804
- geometric sequence, p. 810
- common ratio, p. 810
- geometric series, p. 812
- partial sum, *p. 820*
- explicit rule, p. 827
- recursive rule, p. 827
- iteration, *p. 830*

You can use sequences to describe patterns in the real world. For example, you can use the Fibonacci sequence to describe patterns in nature.

Why?

Animated Algebra

The animation illustrated below for Example 3 on page 828 helps you answer this question: How can you generate Fibonacci numbers?

Animated Algebra at classzone.com

Other animations for Chapter 12: pages 805, 811, and 820