

# 11.2 Apply Transformations to Data

pp. 751-755

### EXAMPLE

Find the mean, median, mode, range, and standard deviation of the data set below and of the data set obtained by multiplying each data value by 0.8.

200, 220, 280, 290, 320, 320, 340, 380

|                    | Original data | Transformed data           |
|--------------------|---------------|----------------------------|
| Mean               | 293.75        | 0.8(293.75) = 235          |
| Median             | 305           | 0.8(305) = 244             |
| Mode               | 320           | 0.8(320) = 256             |
| Range              | 180           | 0.8(180) = 144             |
| Standard deviation | 56.33         | $0.8(56.33) \approx 45.06$ |

### **EXERCISES**

**EXAMPLES 1 and 2**on pp. 751–752
for Exs. 9–11

Find the mean, median, mode, range, and standard deviation of the given data set and of the data set obtained by performing the given transformation.

- 9. 34, 35, 37, 37, 38, 41, 42, 46, 48; add -7 to each data value
- **10.** 62, 66, 66, 68, 74, 76, 78, 80, 82; multiply each data value by 1.2
- 11. **RAINFALL** The list below shows the average rainfall (in millimeters) for Lubbock, Texas, during each month of the year. Find the mean, median, mode, range, and standard deviation of the data in millimeters and of the data in inches. (*Note*: 1 mm  $\approx$  0.03937 in.)

14.9, 14.3, 20.1, 30.5, 76.9, 59.8, 57.2, 40.2, 59.8, 46.5, 16.4, 18.8

## 11.3 Use Normal Distributions

pp. 757-762

#### EXAMPLE

A normal distribution has a mean of 76 and a standard deviation of 9. Use the standard normal table on page 759 to find the probability that a randomly selected *x*-value from the distribution is at most 64.

$$z = \frac{x - \overline{x}}{\sigma} = \frac{64 - 76}{9} \approx -1.3$$

Find z-score for x = 64.

$$P(x \le 64) \approx P(z \le -1.3) = 0.0968$$

Use the standard normal table.

#### **EXERCISES**

on p. 759 for Exs. 12–17 A normal distribution has a mean of 95 and a standard deviation of 7. Use the standard normal table on page 759 to find the indicated probability for a randomly selected x-value from the distribution.

**12.** 
$$P(x \le 89)$$

**13.** 
$$P(x \le 84)$$

**14.** 
$$P(91 < x \le 100)$$

**15.** 
$$P(x \le 50)$$

**16.** 
$$P(x > 100)$$

17. 
$$P(50 < x \le 80)$$