Chapter Review Practice

### 11.2 Apply Transformations to Data

## EXAMPLE

Find the mean, median, mode, range, and standard deviation of the data set below and of the data set obtained by multiplying each data value by 0.8 .

$$
200,220,280,290,320,320,340,380
$$

|  | Original data | Transformed data |
| :--- | :---: | :---: |
| Mean | 293.75 | $0.8(293.75)=235$ |
| Median | 305 | $0.8(305)=244$ |
| Mode | 320 | $0.8(320)=256$ |
| Range | 180 | $0.8(180)=144$ |
| Standard deviation | 56.33 | $0.8(56.33) \approx 45.06$ |

## EXERCISES

EXAMPLES
1 and 2
on pp. 751-752
for Exs. 9-11

Find the mean, median, mode, range, and standard deviation of the given data set and of the data set obtained by performing the given transformation.
9. $34,35,37,37,38,41,42,46,48$; add -7 to each data value
10. $62,66,66,68,74,76,78,80,82$; multiply each data value by 1.2
11. RAINFALL The list below shows the average rainfall (in millimeters) for Lubbock, Texas, during each month of the year. Find the mean, median, mode, range, and standard deviation of the data in millimeters and of the data in inches. (Note: $1 \mathrm{~mm} \approx 0.03937 \mathrm{in}$.)
$14.9,14.3,20.1,30.5,76.9,59.8,57.2,40.2,59.8,46.5,16.4,18.8$

### 11.3 Use Normal Distributions pp. 757-762

## EXAMPLE

A normal distribution has a mean of 76 and a standard deviation of 9. Use the standard normal table on page 759 to find the probability that a randomly selected $x$-value from the distribution is at most 64 .

$$
\begin{array}{ll}
z=\frac{x-\bar{x}}{\sigma}=\frac{64-76}{9} \approx-1.3 & \text { Find } z \text {-score for } x=64 \\
P(x \leq 64) \approx P(z \leq-1.3)=0.0968 & \text { Use the standard normal table. }
\end{array}
$$

## EXERCISES

EXAMPLE 3
on p. 759
for Exs. 12-17
A normal distribution has a mean of 95 and a standard deviation of 7 . Use the standard normal table on page 759 to find the indicated probability for a randomly selected $x$-value from the distribution.
12. $P(x \leq 89)$
13. $P(x \leq 84)$
14. $P(91<x \leq 100)$
15. $P(x \leq 50)$
16. $P(x>100)$
17. $P(50<x \leq 80)$

