PROBLEM SOLVING
 WORKSHOP

 LESSON 11.5
USing AlsERNAJTVENEHODS

Extending Example 2, page 776

teks a.5, a.6, 2A.1.B

MULTIIPLE REPRESENTATIONS In Example 2 on page 776, you used a graphing calculator to find an exponential model of the form $y=a b^{x}$ for a data set. You can extend this method to find exponential models of the form $y=a b^{x}+c$.

Problem

COOLING RATES You are storing leftover chili in a refrigerator. The table shows the chili's temperature y (in degrees Fahrenheit) after x minutes in the refrigerator. Use a graphing calculator to find a model for the data.

x	0	10	20	30	40	50	60
y	100	84	72	63	57	52	49

Transforming Data One approach to solving the problem is to perform a transformation on the data and then find a model for the transformed data.

STEP 1 Enter the data in lists
L_{1} and L_{2}. Then make a scatter plot. The temperature appears to decay exponentially to $40^{\circ} \mathrm{F}$. So the model has the form $y=a b^{x}+40$, or $y-40=a b^{x}$.

STEP 2 Define a new variable $y_{1}=y-40$. Then the data pairs $\left(x, y_{1}\right)$ are modeled by a function of the form $y_{1}=a b^{x}$. Make a list of the values of y_{1} by defining L_{3} as $\mathrm{L}_{2}-40$.

STEP 3 Use exponential regression to find a model for the data in lists L_{1} and L_{3}. The model is $y_{1}=60.2(0.969)^{x}$. So, a model for the original data is $y=60.2(0.969)^{x}+40$.

- A model for the original data is $y=60.2(0.969)^{x}+40$. Graph the model along with the original data to verify that the model fits the data well.

Practice

1. The data pairs (x, y) below give the temperature y (in degrees Fahrenheit) of a hot cup of soup after it sits for x minutes at room temperature. Estimate the temperature of the room. Then find a model for the data.
$(0,132.8),(10,105.8),(30,92.3),(50,84.2)$,
(70, 79.2), (90, 76.1), (110, 75), (120, 74.7),
(130, 74.2)
2. The data pairs (x, y) below give the temperature y (in degrees Celsius) of a cold glass of water after it sits x minutes at room temperature. Estimate the temperature of the room. Then find a model for the data.

$$
\begin{aligned}
& (0,3.5),(20,8.1),(40,12.2),(60,15.4) \\
& (80,17),(100,18.2),(110,18.6),(120,18.9)
\end{aligned}
$$

