PROBLEM SOLVING WORKSHOP LESSON 11.5

Using ALTERNATIVE METHODS

Extending Example 2, page 776

MULTIPLE REPRESENTATIONS In Example 2 on page 776, you used a graphing calculator to find an exponential model of the form $y = ab^x$ for a data set. You can extend this method to find exponential models of the form $y = ab^x + c$.

PROBLEM

COOLING RATES You are storing leftover chili in a refrigerator. The table shows the chili's temperature *y* (in degrees Fahrenheit) after *x* minutes in the refrigerator. Use a graphing calculator to find a model for the data.

x	0	10	20	30	40	50	60
у	100	84	72	63	57	52	49

METHOD

Transforming Data One approach to solving the problem is to perform a transformation on the data and then find a model for the transformed data.

STEP 1 Enter the data in lists L_1 and L_2 . Then make a scatter plot. The temperature appears to decay exponentially to 40°F. So the model has the form $y = ab^x + 40$, or $y - 40 = ab^x$.

STEP 2 Define a new variable $y_1 = y - 40$. Then the data pairs (x, y_1) are modeled by a function of the form $y_1 = ab^x$. Make a list of the values of y_1 by defining L_3 as $L_2 - 40$.

STEP 3 Use exponential regression to find a model for the data in lists L_1 and L_3 . The model is $y_1 = 60.2(0.969)^x$. So, a model for the original data is $y = 60.2(0.969)^x + 40$.

A model for the original data is $y = 60.2(0.969)^x + 40$. Graph the model along with the original data to verify that the model fits the data well.

PRACTICE

1. The data pairs (*x*, *y*) below give the temperature *y* (in degrees Fahrenheit) of a hot cup of soup after it sits for *x* minutes at room temperature. Estimate the temperature of the room. Then find a model for the data.

(0, 132.8), (10, 105.8), (30, 92.3), (50, 84.2), (70, 79.2), (90, 76.1), (110, 75), (120, 74.7), (130, 74.2) 2. The data pairs (*x*, *y*) below give the temperature *y* (in degrees Celsius) of a cold glass of water after it sits *x* minutes at room temperature. Estimate the temperature of the room. Then find a model for the data.

 $\begin{array}{l}(0,\,3.5),\,(20,\,8.1),\,(40,\,12.2),\,(60,\,15.4),\\(80,\,17),\,(100,\,18.2),\,(110,\,18.6),\,(120,\,18.9)\end{array}$