PROBLEM SOLVING

EXAMPLES
1,2, and 3
on pp. 775-777
for Exs. 10-13
10. ECONOMICS The gross domestic product (GDP) is the total value of goods and services produced by a country in any given year. The table shows the GDP y (in billions of dollars) of the United States for selected years from 1930 to 2000. In the table, x represents the number of years since 1930. Use a graphing calculator to find a model for the data.

x	0	10	20	30	40	50	60	70
y	91.3	101.3	294.3	527.4	1039.7	2795.6	5803.2	9824.6

TEXAS @HomeTutor for problem solving help at classzone.com
11. AGRICULTURE The table shows the ages x (in years) and trunk diameters y (in inches) of several Texas grapefruit trees. Use a graphing calculator to find a model for the data.

x	1	4	8	12	16	20	24
y	1.1	3.9	6.2	7.6	9.1	11.4	15.2

TEXAS @HomeTutor for problem solving help at classzone.com
12.

MULTIIPLE REPRESENTATIONS The graph below shows the price of a firstclass stamp in the United States for selected years from 1975 to 2002. Use a graphing calculator to find a model for the data. Then graph the model and the data in the same coordinate plane.

Price of a First-Class Postage Stamp

13. TAKS REASONING The manager of a restaurant kept a record of the number y of customers each hour, where $x=3$ represents 3:00 P.M.

x	3	4	5	6	7	8	9	10
y	9	24	44	56	48	42	38	22

a. Make a scatter plot of the data and determine the type of function that best models the data.
b. Use a regression feature of a graphing calculator to find a function that models the data.
c. Graph the function and data to verify that the function is a good model.
d. Do you think the function you found would accurately predict the number of customers at 1 P.M.? Explain.

