EXAMPLE 3 Use a quadratic model

FUEL EFFICIENCY A study compared the speed *x* (in miles per hour) and the average fuel efficiency *y* (in miles per gallon) of cars. The results are shown in the table. Use a graphing calculator to find a model for the data.

x	15	20	25	30	35	40	45	50	55	60	65
y	22.3	25.5	27.5	29.0	28.8	30.0	29.9	30.2	30.4	28.8	27.4

Solution

STEP **1 Make** a scatter plot. The points form an inverted U-shape. This suggests a quadratic model.

STEP 2 Use the quadratic regression

the model.

feature to find an equation of

QuadReg y=ax2+bx+c a=-.0079300699 b=.726951049 c=13.75622378

STEP 3 **Graph** the model along with the data to verify that the model fits the data well.

A model for the data is $y = -0.00793x^2 + 0.727x + 13.8$.

GUIDED PRACTICE for Example 3

3. FUEL EFFICIENCY Use the model from Example 3 to predict the average fuel efficiency of a car traveling 70 miles per hour.

Use a graphing calculator to find a model for the data. Then graph the model and the data in the same coordinate plane.

4.	x	100	200	300	400	500	600	700
	у	16	35	55	70	68	56	38
5.							-	
	X	-5	-4	-3	-2	-1	1	2
	у	-20	0	3	0	-4	0	18

CHOOSE A MODEL

The data in Example 3 can be modeled by both a quadratic function and a cubic function. When this occurs, it is often better to choose the simpler model.