EXAMPLE 2

Use an exponential model

COOLING RATES You are storing leftover chili in a freezer. The table shows the chili's temperature y (in degrees Fahrenheit) after x minutes in the freezer. Use a graphing calculator to find a model for the data.

X	0	10	20	30	40	50	60
y	100	75	50	35	28	20	15

ANOTHER WAY

For an extension of the problem in Example 2, turn to page 781 for the **Problem Solving Workshop**.

Solution

STEP 1 Make a scatter plot. The points fall rapidly at first and then begin to level off. This suggests an exponential decay model.

STEP 2 Use the exponential regression feature to find an equation of the model.

STEP 3 Graph the model along with the data to verify that the model fits the data well.

• A model for the data is $y = 98.2(0.969)^x$.

Animated Algebra at classzone.com

GUIDED PRACTICE

for Examples 1 and 2

Use a graphing calculator to find a model for the data. Then graph the model and the data in the same coordinate plane.

							70	
y	23.1	28.9	34.9	43.7	53.2	66.5	80.8	99.3

2.	X	0	1	2	3	4	5	6	7
	y	33	41	52	68	80	89	102	118