CHOOSE

CRITERION
In Step 3, some
statisticians use $p<0.1$ or $p<0.01$ as a condition for rejecting a hypothesis.
about a statistical measure for a population.

KEY CONCEPT

For Your Notebook

Hypothesis Testing

STEP 1 State the hypothesis you are testing. The hypothesis should make a statement about some statistical measure of a population (such as the percent of the population that has a certain characteristic).

STEP 2 Collect data from a random sample of the population and compute the statistical measure of the sample.

STEP 3 Assume that the hypothesis is true and calculate the resulting probability p of obtaining the sample statistical measure or a more extreme sample statistical measure. If this probability is small (typically $p<0.05$), you should reject the hypothesis.

EXAMPLE 2 Test a hypothesis

FIREFIGHTING A recent Harris Poll claimed that 48% of adults consider firefighting to be a prestigious occupation. To test this finding, you survey 40 adults and find that 15 of them do consider firefighting a prestigious occupation. Should you reject the Harris Poll's findings? Explain.

Solution

STEP 1 State the hypothesis.
48% of adults consider firefighting a prestigious occupation.
STEP 2 Collect data and calculate a statistical measure.
In your survey, 15 out of 40 people, or 37.5%, consider firefighting to be a prestigious occupation.
STEP 3 Assume that the hypothesis in Step 1 is true. Find the resulting probability that you could randomly select 15 or fewer adults out of 40 who consider firefighting a prestigious occupation. This probability is

$$
P(x \leq 15)=P(x=0)+P(x=1)+P(x=2)+\cdots+P(x=15)
$$

where each term in the sum is a binomial probability with $n=40$ and $p=0.48$.

You can approximate the binomial distribution with a normal distribution having the following mean and standard deviation:

$$
\begin{aligned}
\bar{x} & =n p=40(0.48)=19.2 \\
\sigma & =\sqrt{n p(1-p)}=\sqrt{40(0.48)(0.52)} \approx 3.16
\end{aligned}
$$

Using a z-score and the standard normal table on page 759 gives:

$$
P(x \leq 15) \approx P\left(z \leq \frac{15-19.2}{3.16}\right) \approx P(z \leq-1.3)=0.0968
$$

So, if it is true that 48% of adults consider firefighting a prestigious occupation, then there is about a 10% probability of finding 15 or fewer adults who consider firefighting prestigious in a random sample of 40 adults. With a probability this large, you should not reject the hypothesis.

