28. TAKS REASONING Let x be a randomly selected value from a normal distribution with mean 80 and standard deviation 10 . If $P(x \leq k)=0.9192$, what is the value of k ? Explain.
29. ERROR ANALYSIS In a study, the wheat yields (in bushels) for several plots of land were normally distributed with a mean of 4 bushels and a standard deviation of 0.25 bushel. Describe and correct the error in finding the probability that a plot yielded at least 3.8 bushels.

$$
z=\frac{x-\bar{x}}{\sigma}=\frac{3.8-4}{0.25}=-0.8
$$

From the standard normal table, $P(z \geq-0.8)=0.2119$. So, the probability that a plot yielded at least 3.8 bushels is 0.2119 .

30. CHALLENGE A normal curve is defined by an equation of this form:

$$
y=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\bar{x}}{\sigma}\right)^{2}}
$$

a. Graphing Calculator Graph three equations of the given form. The equations should use the same mean but different standard deviations.
b. Reasoning Describe the effect of the standard deviation on the shape of a normal curve.

PROBLEM SOLVING

EXAMPLES

2 and 3 on pp. 758-759
for Exs. 31-34
31. BIOLOGY The illustration shows a housefly at several times its actual size and indicates the fly's wing length. A study found that the wing lengths of houseflies are normally distributed with a mean of about 4.6 millimeters and a standard deviation of about 0.4 millimeter. What is the probability that a randomly selected housefly has a wing length of at least 5 millimeters?

TEXAS @HomeTutor for problem solving help at classzone.com
32. FIRE DEPARTMENT The time a fire department takes to arrive at the scene of an emergency is normally distributed with a mean of 6 minutes and a standard deviation of 1 minute.
a. What is the probability that the fire department takes at most 8 minutes to arrive at the scene of an emergency?
b. What is the probability that the fire department takes between 4 minutes and 7 minutes to arrive at the scene of an emergency?

TEXAS @HomeTutor for problem solving help at classzone.com
33. MULTI-STEP PROBLEM Boxes of cereal are filled by a machine. Tests of the machine's accuracy show that the amount of cereal in each box varies. The weights are normally distributed with a mean of 20 ounces and a standard deviation of 0.25 ounce.
a. Find the z-scores for weights of 19.4 ounces and 20.4 ounces.
b. What is the probability that a randomly selected cereal box weighs at most 19.4 ounces?
c. What is the probability that a randomly selected cereal box weighs between 19.4 ounces and 20.4 ounces? Explain your reasoning.

