READING

 In the table, the value $.0000+$ means "slightly more than 0 " and the value 1.0000 - means "slightly less than 1. ."STANDARD NORMAL TABLE If z is a randomly selected value from a standard normal distribution, you can use the table below to find the probability that z is less than or equal to some given value. For example, the table shows that $P(z \leq-0.4)=0.3446$. You can find the value of $P(z \leq-0.4)$ in the table by finding the value where row -0 and column .4 intersect.

Standard Normal Table										
\mathbf{Z}	$\mathbf{. 0}$	$\mathbf{. 1}$	$\mathbf{. 2}$	$\mathbf{. 3}$	$\mathbf{. 4}$	$\mathbf{. 5}$	$\mathbf{. 6}$	$\mathbf{. 7}$	$\mathbf{. 8}$	$\mathbf{. 9}$
$\mathbf{- 3}$.0013	.0010	.0007	.0005	.0003	.0002	.0002	.0001	.0001	$.0000+$
$\mathbf{- 2}$.0228	.0179	.0139	.0107	.0082	.0062	.0047	.0035	.0026	.0019
$\mathbf{- 1}$.1587	.1357	.1151	.0968	.0808	.0668	.0548	.0446	.0359	.0287
$\mathbf{- 0}$.5000	.4602	.4207	.3821	.3446	.3085	.2743	.2420	.2119	.1841
$\mathbf{0}$.5000	.5398	.5793	.6179	.6554	.6915	.7257	.7580	.7881	.8159
$\mathbf{1}$.8413	.8643	.8849	.9032	.9192	.9332	.9452	.9554	.9641	.9713
$\mathbf{2}$.9772	.9821	.9861	.9893	.9918	.9938	.9953	.9965	.9974	.9981
$\mathbf{3}$.9987	.9990	.9993	.9995	.9997	.9998	.9998	.9999	.9999	$1.0000-$

You can also use the standard normal table to find probabilities for any normal distribution by first converting values from the distribution to z-scores.

EXAMPLE 3 Use a z-score and the standard normal table

BIOLOGY Scientists conducted aerial surveys of a seal sanctuary and recorded the number x of seals they observed during each survey. The numbers of seals observed were normally distributed with a mean of 73 seals and a standard deviation of 14.1 seals. Find the probability that at most 50 seals were observed during a survey.

Solution

STEP 1 Find the z-score corresponding to an x-value of 50 .

$$
z=\frac{x-\bar{x}}{\sigma}=\frac{50-73}{14.1} \approx-1.6
$$

STEP 2 Use the table to find $P(x \leq 50) \approx P(z \leq-1.6)$.
The table shows that $P(z \leq-1.6)=0.0548$. So, the probability that at most 50 seals were observed during a survey is about 0.0548 .

\mathbf{z}	$\mathbf{. 0}$	$\mathbf{. 1}$	$\mathbf{. 2}$	$\mathbf{. 3}$	$\mathbf{. 4}$	$\mathbf{. 5}$	$\mathbf{. 6}$	$\mathbf{. 7}$	$\mathbf{. 8}$	$\mathbf{. 9}$
$-\mathbf{3}$.0013	.0010	.0007	.0005	.0003	.0002	.0002	.0001	.0001	$.0000+$
$\mathbf{- 2}$.0228	.0179	.0139	.0107	.0082	.0062	.0047	.0035	.0026	.0019
$-\mathbf{1}$.1587	.1357	.1151	.0968	.0808	.0668	.0548	.0446	.0359	.0287
$\mathbf{- 0}$.5000	.4602	.4207	.3821	.3446	.3085	.2743	.2420	.2119	.1841
$\mathbf{0}$.5000	.5398	.5793	.6179	.6554	.6915	.7257	.7580	.7881	.8159

Guided Practice for Example 3

8. WHAT IF? In Example 3, find the probability that at most 90 seals were observed during a survey.
9. REASONING Explain why it makes sense that $P(z \leq 0)=0.5$.
