EXAMPLE 2 Interpret normally distributed data

READING

The abbreviation "mg/dl" stands for "milligrams per deciliter."

HEALTH The blood cholesterol readings for a group of women are normally distributed with a mean of $172 \mathrm{mg} / \mathrm{dl}$ and a standard deviation of $14 \mathrm{mg} / \mathrm{dl}$.
a. About what percent of the women have readings between 158 and 186 ?
b. Readings higher than 200 are considered undesirable. About what percent of the readings are undesirable?

Solution

a. The readings of 158 and 186 represent one standard deviation on either side of the mean, as shown below. So, 68% of the women have readings between 158 and 186.

b. A reading of 200 is two standard deviations to the right of the mean, as shown. So, the percent of readings that are undesirable is $2.35 \%+0.15 \%$, or 2.5%.

Guided Practice for Examples 1 and 2

A normal distribution has mean \bar{x} and standard deviation σ. Find the indicated probability for a randomly selected \boldsymbol{x}-value from the distribution.

1. $P(x \leq \bar{x})$
2. $P(x \geq \bar{x})$
3. $P(\bar{x} \leq x \leq \bar{x}+2 \sigma)$
4. $P(\bar{x}-\sigma \leq x \leq \bar{x})$
5. $P(x \leq \bar{x}-3 \sigma)$
6. $P(x \geq \bar{x}+\sigma)$
7. WHAT IF? In Example 2, what percent of the women have readings between 172 and 200 ?

STANDARD NORMAL DISTRIBUTION The standard normal distribution is the normal distribution with mean 0 and standard deviation 1 . The formula below can be used to transform x-values from a normal distribution with mean \bar{x} and standard deviation σ into z-values having a standard normal distribution.

The z-value for a particular x-value is called the z-score for the x-value and is the number of standard deviations the x-value lies above or below the mean \bar{x}.

