EXAMPLE 4 Graph an equation in two variables

Graph the equation $y=-2 x-1$.

Solution

STEP 1 Construct a table of values.

x	-2	-1	0	1	2
y	3	1	-1	-3	-5

STEP 2 Plot the points. Notice that they all lie on a line.
STEP 3 Connect the points with a line.

LINEAR FUNCTIONS The function $y=-2 x-1$ in Example 4 is a linear function because it can be written in the form $y=m x+b$ where m and b are constants. The graph of a linear function is a line. By renaming y as $f(x)$, you can write

The parentheses in $f(x)$ do not indicate multiplication. The symbol $f(x)$ does not mean " f times x."
$y=m x+b$ using function notation.

$$
\begin{array}{ll}
y=m x+b & \text { Linear function in } x-y \text { notation } \\
f(x)=m x+b & \text { Linear function in function notation }
\end{array}
$$

The notation $f(x)$ is read "the value of f at x," or simply " f of x," and identifies x as the independent variable. The domain consists of all values of x for which $f(x)$ is defined. The range consists of all values of $f(x)$ where x is in the domain of f.

EXAMPLE 5 Classify and evaluate functions

Tell whether the function is linear. Then evaluate the function when $x=-4$.
a. $f(x)=-x^{2}-2 x+7$
b. $g(x)=5 x+8$

Solution

a. The function f is not linear because it has an x^{2}-term.

$$
\begin{aligned}
f(x) & =-x^{2}-2 x+7 & & \text { Write function. } \\
f(-4) & =-(-4)^{2}-2(-4)+7 & & \text { Substitute }-4 \text { for } x . \\
& =-1 & & \text { Simplify. }
\end{aligned}
$$

b. The function g is linear because it has the form $g(x)=m x+b$.

$$
\begin{aligned}
g(x) & =5 x+8 & & \text { Write function. } \\
g(-4) & =5(-4)+8 & & \text { Substitute }-4 \text { for } x . \\
& =-12 & & \text { Simplify. }
\end{aligned}
$$

GUIDED PrActice for Examples 4 and 5

4. Graph the equation $y=3 x-2$.

Tell whether the function is linear. Then evaluate the function when $\boldsymbol{x}=\mathbf{- 2}$.
5. $f(x)=x-1-x^{3}$
6. $g(x)=-4-2 x$

