30. TAKS REASONING The table shows the results (in meters) for the final round of the 2004 and 1964 men's Olympic javelin throw events.

Men's Olympic Javelin Throw	
2004 data	1964 data
86.50, 84.95, 84.84, 84.13,	82.66, 82.32, 80.57, 80.17,
83.31, 83.25, 83.14, 83.01,	$78.72,76.94,74.72,74.26$
$80.59,80.28,79.43,74.36$	

a. Calculate Find the mean, median, mode, range, and standard deviation of the 2004 data.
b. Calculate Find the mean, median, mode, range, and standard deviation of the 1964 data.
c. Analyze Compare the statistics for each set of data. Draw one or more conclusions about the data.

31. Challenge The mean discussed in this lesson is called the arithmetic mean. Another type of mean is the geometric mean. The geometric mean of two positive numbers a and b is $\sqrt{a b}$. Use the steps below to prove that the arithmetic mean of a and b is always greater than or equal to the geometric mean of a and b.
a. Explain why $(a-b)^{2} \geq 0$.
b. Use the inequality in part (a) to show that $(a+b)^{2} \geq 4 a b$.
c. Use the inequality in part (b) to show that the arithmetic mean of a and b is greater than or equal to the geometric mean of a and b, or $\frac{a+b}{2} \geq \sqrt{a b}$.
d. Under what condition is the arithmetic mean of a and b equal to the geometric mean of a and b ?

MIXED REVIEW FOR TAKS

TAKS PRACTICE at classzone.com

REVIEW

Lesson 2.3;
TAKS Workbook
32. TAKS PRACTICE Which best describes the effect on the graph of $y=-\frac{2}{3} x-1$ when the slope is doubled? TAKS Obj. 3
(A) The y-intercept decreases.
(B) The y-intercept increases.
(C) The x-intercept decreases.
(D) The x-intercept increases.

33. TAKS PRACTICE What is the length of the line segment joining the points $(8,3)$ and $(2,-1)$? TAKS Obj. 7
(F) $2 \sqrt{5}$
(G) $\sqrt{34}$
(H) $2 \sqrt{13}$
(J) $2 \sqrt{26}$
34. TAKS PRACTICE Which equation describes a relationship in which every real number x corresponds to a negative real number y ? TAKS Obj. 10
(A) $y=x$
(B) $y=x^{2}$
(C) $y=|-x|$
(D) $y=-|x|$

