30. TAKS REASONING The table shows the results (in meters) for the final round of the 2004 and 1964 men's Olympic javelin throw events.

Men's Olympic Javelin Throw	
2004 data	1964 data
86.50, 84.95, 84.84, 84.13, 83.31, 83.25, 83.14, 83.01, 80.59, 80.28, 79.43, 74.36	82.66, 82.32, 80.57, 80.17, 78.72, 76.94, 74.72, 74.26

- **a. Calculate** Find the mean, median, mode, range, and standard deviation of the 2004 data.
- **b. Calculate** Find the mean, median, mode, range, and standard deviation of the 1964 data.
- **c. Analyze** *Compare* the statistics for each set of data. Draw one or more conclusions about the data.

- **31. CHALLENGE** The mean discussed in this lesson is called the *arithmetic mean*. Another type of mean is the *geometric mean*. The geometric mean of two positive numbers *a* and *b* is \sqrt{ab} . Use the steps below to prove that the arithmetic mean of *a* and *b* is always greater than or equal to the geometric mean of *a* and *b*.
 - **a.** *Explain* why $(a b)^2 \ge 0$.
 - **b.** Use the inequality in part (a) to show that $(a + b)^2 \ge 4ab$.
 - **c.** Use the inequality in part (b) to show that the arithmetic mean of *a* and *b* is greater than or equal to the geometric mean of *a* and *b*, or $\frac{a+b}{2} \ge \sqrt{ab}$.
 - **d.** Under what condition is the arithmetic mean of *a* and *b* equal to the geometric mean of *a* and *b*?

