10 TAKS PRACTICE

PRACTICE FOR TAKS OBJECTIVE 6

1. Borders for a bedroom wall can be created using transformations of a stencil. Which border is created using a translation and a rotation of the previous stencil in the pattern?

2. A new tile pattern is being designed for a kitchen floor. Which transformation is used to create the tile pattern shown?

- **F** Reflection
- **G** Rotation
- **H** Translation
- J Dilation
- **3.** $\angle A$ and $\angle B$ are vertical angles and $m \angle A$ is *x*. Which equation can be used to find *y* if $y = m \angle B$?
 - **A** y = x
 - **B** y = 90 + x
 - **C** y = 90 x
 - **D** y = 180 x

- **4.** Start with a circle having a diameter of 1 unit. In each iteration, perform the following steps for the diameter of each circle resulting from the previous iteration.
 - Step 1: Divide the diameter into two equal segments.
 - Step 2: Draw new circles, each with the new diameter.

What fraction of the area of the circle with a diameter of 1 unit is the area of the smallest circle created in the third iteration?

- **F** $\frac{1}{128}$
- **G** $\frac{1}{64}$
- **H** $\frac{1}{16}$
- J $\frac{1}{4}$

MIXED TAKS PRACTICE

- 5. How does the graph of $y = x^2 + 3$ differ from the graph of $y = x^2 5$? *TAKS Obj. 5*
 - A The graph of $y = x^2 + 3$ is wider than the graph of $y = x^2 5$.
 - **B** The graph of $y = x^2 + 3$ is narrower than the graph of $y = x^2 5$.
 - **C** The graph of $y = x^2 + 3$ is 8 units above the graph of $y = x^2 5$.
 - **D** The graph of $y = x^2 + 3$ is 2 units below the graph of $y = x^2 5$.
- **6.** A diameter of a circle has endpoints (-3, 4) and (-2, -3). About how long is a radius of the circle? *TAKS Obj. 7*
 - **F** 2.5 units
 - **G** 3.5 units
 - **H** 5.1 units
 - **J** 7.1 units