10.4 Probabilities of Disjoint and Overlapping Events

CHAPTER REVIEW

pp. 707-713

EXAMPLE

Let A and B be events such that $P(A) = \frac{2}{3}$, $P(B) = \frac{1}{2}$, and $P(A \text{ and } B) = \frac{1}{3}$. Find P(A or B).

 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) = \frac{2}{3} + \frac{1}{2} - \frac{1}{3} = \frac{5}{6}$

EXERCISES

EXAMPLES 2 and 4 on pp. 708–709 for Exs. 20–22

EXAMPLE 5

on p. 719 for Exs. 23–25 Let *A* and *B* be events such that P(A) = 0.32, P(B) = 0.48, and P(A and B) = 0.12. Find the indicated probability.

2 | **20.** P(A or B) **21.** $P(\overline{A})$ **22.** $P(\overline{B})$

10.5 Probabilities of Independent and Dependent Events *pp.* 717–723

EXAMPLE

Find the probability of selecting a club and then another club from a standard deck of 52 cards if (a) you replace the first card before selecting the second, and (b) you do *not* replace the first card.

Let event A be "the first card is a club" and B be "the second card is a club."

a.
$$P(A \text{ and } B) = P(A) \cdot P(B) = \frac{13}{52} \cdot \frac{13}{52} = \frac{1}{16} = 0.0625$$

b.
$$P(A \text{ and } B) = P(A) \cdot P(B|A) = \frac{13}{52} \cdot \frac{12}{51} = \frac{1}{17} \approx 0.0588$$

EXERCISES

Find the probability of randomly selecting the given marbles from a bag of 5 red, 8 green, and 3 blue marbles if (a) you replace the first marble before drawing the second and (b) you do *not* replace the first marble.

23. red, then green**24.** blue, then red**25.** green, then green

10.6	Construct and In	terpret Binomial I	Distributions	pp. 724–730
	EXAMPLE			
	Find the probability of tossing a coin 12 times and getting exactly 4 heads.			
	$P(k = 4) = {}_{n}C_{k}p^{k}(1-p)^{n-k} = {}_{12}C_{4}(0.5)^{4}(1-0.5)^{8} = 495(0.5)^{4}(0.5)^{8} \approx 0.121$			
EXAMPLE 3 on p. 726 for Exs. 26–29	EXERCISES Find the probability of tossing a coin 8 times and getting the given number of heads.			
	26. 6	27. 4	28. 7	29. 0