EXERCISES

EXAMPLES

4 and 5
on pp. 684-685
for Exs. 5-9
5. PHOTOGRAPHY You are placing 12 pictures on separate pages in an album. How many different ways can you order the 12 pictures in the album? How many different ways can 4 of the 12 pictures be placed on the first 4 pages?
Find the number of permutations.
6. ${ }_{9} P_{1}$
7. ${ }_{5} P_{5}$
8. ${ }_{6} P_{3}$
9. ${ }_{10} P_{2}$

10.2 Use Combinations and the Binomial Theorem

EXAMPLE

Use the binomial theorem to expand $(x+5 y)^{4}$.

$$
\begin{aligned}
(x+5 y)^{4} & ={ }_{4} C_{0} x^{4}(5 y)^{0}+{ }_{4} C_{1} x^{3}(5 y)^{1}+{ }_{4} C_{2} x^{2}(5 y)^{2}+{ }_{4} C_{3} x^{1}(5 y)^{3}+{ }_{4} C_{4} x^{0}(5 y)^{4} \\
& =(1)\left(x^{4}\right)(1)+(4)\left(x^{3}\right)(5 y)+(6)\left(x^{2}\right)\left(25 y^{2}\right)+(4)(x)\left(125 y^{3}\right)+(1)(1)\left(625 y^{4}\right) \\
& =x^{4}+20 x^{3} y+150 x^{2} y^{2}+500 x y^{3}+625 y^{4}
\end{aligned}
$$

EXERCISES

EXAMPLES

3, 5, and 6
on pp. 691-693
for Exs. 10-14
Use the binomial theorem to write the binomial expansion.
10. $(t+3)^{6}$
11. $\left(2 a+b^{2}\right)^{4}$
12. $(w-8 v)^{4}$
13. $\left(r^{3}-4 s\right)^{5}$
14. ICE CREAM An ice cream vendor sells 15 flavors of ice cream. You want to sample at least 4 of the flavors. How many different combinations of ice cream flavors can you sample?
10.3 Define and Use Probability

EXAMPLE

You roll a standard six-sided die. Find the probability of rolling a number less than 3.

Two outcomes correspond to rolling a number less than 3: rolling a 1 or 2.
$P($ rolling less than 3$)=\frac{\text { Number of ways to roll less than } 3}{\text { Number of ways to roll the die }}=\frac{2}{6}=\frac{1}{3}$

EXERCISES

EXAMPLES
1 and 4
on pp. 698-700
for Exs. 15-19

You have an equally likely chance of choosing any integer from 1 through 30. Find the probability of the given event.
15. An even number is chosen.
16. A multiple of 5 is chosen.
17. A factor of 60 is chosen.
18. A prime number is chosen.
19. COMMUTING Out of 250 work days, a commuter arrived at work on time 47 times on Mondays, 43 times on Tuesdays, 48 times on Wednesdays, 39 times on Thursdays, and 40 times on Fridays. For a randomly selected work day, what is the probability that the commuter arrived at work on time?

