A CHMPTER SUMMARY

BIG IDEAS

Using Permutations and Combinations

PERMUTATIONS Order is important	Permutations of n distinct objects	$n!$	Number of ways to arrange 10 students at 10 desks: $10!=3,628,800$
	Permutations of n distinct objects taken r at a time	${ }_{n} P_{r}=\frac{n!}{(n-r)!}$	Number of ways to arrange 8 students at 10 desks: $\frac{10!}{2!}=1,814,400$
	Permutations of n objects where one object is repeated s_{1} times, another is repeated s_{2} times, and so on	$\frac{n!}{s_{1}!\cdot s_{2}!\cdot \ldots \cdot s_{k}!}$	Number of distinguishable permutations of the letters in STUDENTS: $\frac{8!}{2!\cdot 2!}=10,080$
COMBINATIONS Order is not important	Combinations of r objects taken from a group of n distinct objects	${ }_{n} C_{r}=\frac{n!}{(n-r)!\cdot r!}$	Number of ways to choose 8 students from a set of 10 students: $\frac{10!}{2!\cdot 8!}=45$

Finding Probabilities

The following table shows which formula to use when finding probabilities involving two events A and B.

Overlapping Events	Independent Events	Dependent Events
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$	$P(A$ and $B)=P(A) \cdot P(B)$	$P(A$ and $B)=P(A) \cdot P(B \mid A)$

Constructing Binomial Distributions

For a binomial experiment, the probability of exactly k successes in n trials is

$$
P(k \text { successes })={ }_{n} C_{k} p^{k}(1-p)^{n-k}
$$

where the probability of success on each trial is p.

A binomial distribution shows the probabilities of all possible outcomes in a binomial experiment. The distribution is skewed if $p \neq 0.5$.

