BIG IDEAS

For Your Notebook

Using Permutations and Combinations

PERMUTATIONS Order is important	Permutations of <i>n</i> distinct objects	n!	Number of ways to arrange 10 students at 10 desks: 10! = 3,628,800
	Permutations of <i>n</i> distinct objects taken <i>r</i> at a time	${}_{n}P_{r}=\frac{n!}{(n-r)!}$	Number of ways to arrange 8 students at 10 desks: $\frac{10!}{2!} = 1,814,400$
	Permutations of n objects where one object is repeated s_1 times, another is repeated s_2 times, and so on	$\frac{n!}{s_1! \cdot s_2! \cdot \ldots \cdot s_k!}$	Number of distinguishable permutations of the letters in STUDENTS: $\frac{8!}{2! \cdot 2!} = 10,080$
COMBINATIONS Order is not important	Combinations of <i>r</i> objects taken from a group of <i>n</i> distinct objects	${}_{n}C_{r}=\frac{n!}{(n-r)!\cdot r!}$	Number of ways to choose 8 students from a set of 10 students: $\frac{10!}{2! \cdot 8!} = 45$

Big Idea 🚺

TEKS a.2

Finding Probabilities

The following table shows which formula to use when finding probabilities involving two events *A* and *B*.

Overlapping Events	Independent Events	Dependent Events
P(A or B) = P(A) + P(B) - P(A and B)	$P(A \text{ and } B) = P(A) \cdot P(B)$	$P(A \text{ and } B) = P(A) \cdot P(B A)$

Constructing Binomial Distributions

For a binomial experiment, the probability of exactly *k* successes in *n* trials is

 $P(k \text{ successes}) = {}_{n}C_{k}p^{k}(1-p)^{n-k}$

where the probability of success on each trial is *p*.

A binomial distribution shows the probabilities of all possible outcomes in a binomial experiment. The distribution is skewed if $p \neq 0.5$.

