10.6 Create a Binomial Distribution

teks a.1, a. 5

QUESTION How can you use a graphing calculator to calculate binomial probabilities?

Some calculators have a binomial probability distribution function that you can use to calculate binomial probabilities. You can then use the calculator to draw a histogram of the distribution.

EXAMPLE Calculate binomial probabilities

TV NEWS According to a survey, 38% of U.S. adults get their news primarily from television. Suppose you survey 6 adults at random. Draw a histogram of the binomial distribution showing the probability that television is the primary news source for exactly k adults. What is the most likely number of adults in your survey who get their news primarily through television?

STEP 1 Enter values of k

Let $p=0.38$ be the probability that television is a person's primary news source. Enter the k-values 0 through 6 into list L_{1} on the graphing calculator.

STEP 2 find values of $P(k)$

Enter the binomial probability command to generate $P(k)$ for all seven k-values. Store the results in list L_{2}.

STEP 3 Draw histogram

Set up the histogram to use the numbers in list L_{1} as x-values and the numbers in list L_{2} as frequencies. Draw the histogram in a suitable viewing window.

From the histogram in Step 3, you can see that $k=2$ is the most likely number of the 6 adults surveyed who get their news primarily through television.

Practice

A binomial experiment consists of \boldsymbol{n} trials with probability \boldsymbol{p} of success on each trial. Use a graphing calculator to draw a histogram of the binomial distribution that shows the probability of exactly k successes. Then find the most likely number of successes.

1. $n=12, p=0.29$
2. $n=14, p=0.58$
3. $n=15, p=0.805$
4. WHAT IF? In the example, how do your histogram and the most likely number of adults change if you survey 14 adults at random?
