FUNCTIONS A **function** is a relation for which each input has exactly one output. If any input of a relation has more than one output, the relation is *not* a function.

EXAMPLE 2 Identify functions

Tell whether the relation is a function. Explain.

AVOID ERRORS

A relation can map more than one input onto the same output and still be a function.

Input	Output				
-3-	-2				
-1-	> 3				
$\begin{pmatrix} 2\\4 \end{pmatrix}$	┣_4				

Solution

a.

- **a.** The relation *is* a function because each input is mapped onto exactly one output.
- **b.** The relation *is not* a function because the input 1 is mapped onto both −1 and 2.

Animated Algebra at classzone.com

GUIDED PRACTICE for Examples 1 and 2

- **1.** Consider the relation given by the ordered pairs (−4, 3), (−2, 1), (0, 3), (1, −2), and (−2, −4).
 - **a.** Identify the domain and range.
 - b. Represent the relation using a table and a mapping diagram.

2.	2. Tell whether the relation is a function. <i>Explain</i> .	x	-2	-1	0	1	3
		V	-4	-4	-4	-4	-4

VERTICAL LINE TEST You can use the graph of a relation to determine whether it is a function by applying the *vertical line test*.

REVIEW LOGICAL STATEMENTS

For help with "if and only if" statements, see p. 1002.