EXAMPLES

3 and 4
on p. 726
for Exs. 10-32
INTERPRETING PROBABILITY DISTRIBUTIONS In Exercises 6-9, use the given histogram of a probability distribution for a random variable X.
6. What is the probability that X is equal to 1 ?

7. What is the most likely value for X ?
8. What is the probability that X is odd?

Value of X
9. TAKS REASONING What is the probability that X is at least 3 ?
(A) 0.2
(B) 0.4
(C) 0.6
(D) 0.8

CALCULATING PROBABILITIES Calculate the probability of tossing a coin 20 times and getting the given number of heads.
10. 1
11. 2
12. 4
13. 6
14. 9
15. 12
16. 15
17. 18

BINOMIAL PROBABILITIES Calculate the probability of randomly guessing the given number of correct answers on a 30-question multiple choice exam that has choices A, B, C, and D for each question.
18. 0
19. 2
20. 6
(21.) 11
22. 15
23. 21
24. 26
25. 30

ERROR ANALYSIS Describe and correct the error in calculating the probability of rolling a 1 exactly 3 times in 5 rolls of a six-sided die.
26.

$$
\begin{aligned}
P(k=3) & ={ }_{5} C_{3}\left(\frac{1}{6}\right)^{5-3}\left(\frac{5}{6}\right)^{3} \\
& \approx 0.161
\end{aligned}
$$

27.

$$
\begin{aligned}
P(k=3) & =\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{5-3} \\
& \approx 0.003
\end{aligned}
$$

BINOMIIAL DISTRIBUTIONS Calculate the probability of \boldsymbol{k} successes for a binomial experiment consisting of \boldsymbol{n} trials with probability p of success on each trial.
28. $k \leq 3, n=7, p=0.3$
29. $k \geq 5, n=8, p=0.6$
30. $k \leq 2, n=5, p=0.12$
31. $k \geq 10, n=15, p=0.75$
32. TAKS REASONING You perform a binomial experiment consisting of 10 trials with a probability of success of 36% on each trial. What is the most likely number of successes?
(A) 3
(B) 4
(C) 6
(D) 7

HISTOGRAMS A binomial experiment consists of \boldsymbol{n} trials with probability \boldsymbol{p} of success on each trial. Draw a histogram of the binomial distribution that shows the probability of exactly k successes. Describe the distribution as either symmetric or skewed. Then find the most likely number of successes.
33. $n=3, p=0.3$
34. $n=6, p=0.5$
35. $n=4, p=0.16$
36. $n=7, p=0.85$
37. $n=8, p=0.025$
38. $n=12, p=0.5$
39. TAKS REASONING Construct a symmetric probability distribution for a random variable X and a skewed probability distribution for a random variable Y. Make a table and a histogram for each distribution.

