10.6 Construct and Interpret Binomial Distributions

You found probabilities of events. You will study probability distributions. So you can describe interest in museums, as in Ex. 46.

Key Vocabulary

- random variable
- probability distribution
- binomial distribution
- binomial experiment
- symmetric
- skewed

A **random variable** is a variable whose value is determined by the outcomes of a random event. For example, when you roll a six-sided die, you can define a random variable *X* that represents the number showing on the die. So, the possible values of *X* are 1, 2, 3, 4, 5, and 6. For every random variable, a *probability distribution* can be defined.

KEY CONCEPT

Probability Distributions

A probability distribution

is a function that gives the probability of each possible value of a random variable. The sum of all the probabilities in a probability distribution must equal 1.

Probability Distribution for Rolling a Die									
X	1	2	3	4	5	6			
P (X)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	<u>1</u> 6			

For Your Notebook

EXAMPLE 1 Construct a probability distribution

Let X be a random variable that represents the sum when two six-sided dice are rolled. Make a table and a histogram showing the probability distribution for X.

REVIEW COMPOUND EVENTS

Recall that there are 36 possible outcomes when rolling two sixsided dice. These are listed in Example 4 on page 709.

Solution

The possible values of X are the integers from 2 to 12. The table shows how many outcomes of rolling two dice produce each value of X. Divide the number of outcomes for X by 36 to find P(X).

X (sum)	2	3	4	5	6	7	8	9	10	11	12
Outcomes	1	2	3	4	5	6	5	4	3	2	1
P (X)	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	<u>5</u> 36	$\frac{1}{6}$	<u>5</u> 36	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	<u>1</u> 36