SUBSETS If every element of a set A is also an element of a set B, then A is a subset of B. This relationship is written as $A \subseteq B$. For any set $A, \emptyset \subseteq A$ and $A \subseteq A$. In the diagram at the right, A is a subset of B.

EXAMPLE 2 Identify subsets

Let $A=\{-2,1, \sqrt{3}, \pi\}, B=\{1, \pi, 5\}$, and $C=\{-2,1,3, \pi, 5\}$.
a. Is $B \subseteq A$?
b. Is $B \subseteq C$?
c. Is $C \subseteq(A \cup B)$?

Solution

a. Not every element of B is an element of A, because 5 is not an element of A. So, B is not a subset of A.
b. Every element of B is an element of C. So, B is a subset of C.
c. Note that $A \cup B=\{-2,1, \sqrt{3}, \pi\} \cup\{1, \pi, 5\}=\{-2,1, \sqrt{3}, \pi, 5\}$. Not every element of C is an element of $A \cup B$, because 3 is not an element of $A \cup B$. So, C is not a subset of $A \cup B$.

Practice

EXAMPLE 1

on p. 715
for Exs. 1-8

EXAMPLE 2
on p. 716
for Exs. 9-12

OPERATIONS ON SETS Let U be the set of all whole numbers from 1 to 20.
Let $A=\{2,3,5,7,11,13,17\}, B=\{1,4,9,16\}$, and $C=\{2,5,8,11,14,17,20\}$.
Find the indicated set.

1. $A \cup B$
2. $A \cap B$
3. \bar{A}
4. \bar{B}
5. $A \cup B \cup C$
6. $\bar{A} \cap C$
7. $\overline{C \cup B}$
8. $B \cup(A \cap C)$

SUBSETS Let $A=\{-5, \pi, 10\}, B=\{-5,1, \sqrt{5}, 10\}$, and $C=\{-5,2, \pi, 10\}$.
9. Is $A \subseteq B$?
10. Is $A \subseteq C$?
11. Is $(A \cap B) \subseteq C$?
12. REASONING List all the subsets of the set $A=\{-2,4,9\}$.

OPERATIONS ON SETS Consider the sets defined below. Find the indicated set.
$U=$ the set of all 12 months $\quad X=$ the set of all 30 day months
$Y=$ the set of all 31 day months
$Z=$ the set of all months ending with " r "
13. $X \cup Z$
14. $X \cap Y$
15. \bar{Z}
16. $\overline{X \cup Y}$
17. REASONING Is the set of all irrational numbers a subset of the real numbers? of the integers? Explain.
18. RADIO Two radio towers are set up at points A and B on the map at the right. Each radio tower has a signal that can reach towns up to 50 miles away. Find the set of all towns that can receive a signal from both of the towers.

