SUBSETS If every element of a set *A* is also an element of a set *B*, then *A* is a **subset** of *B*. This relationship is written as $A \subseteq B$. For any set *A*, $\emptyset \subseteq A$ and $A \subseteq A$. In the diagram at the right, *A* is a subset of *B*.

EXAMPLE 2 Identify subsets

Let $A = \{-2, 1, \sqrt{3}, \pi\}$, $B = \{1, \pi, 5\}$, and $C = \{-2, 1, 3, \pi, 5\}$.

a. Is $B \subseteq A$? **b.** Is $B \subseteq C$? **c.** Is $C \subseteq (A \cup B)$?

Solution

- **a.** Not every element of *B* is an element of *A*, because 5 is not an element of *A*. So, *B* is *not* a subset of *A*.
- **b.** Every element of *B* is an element of *C*. So, *B* is a subset of *C*.
- **c.** Note that $A \cup B = \{-2, 1, \sqrt{3}, \pi\} \cup \{1, \pi, 5\} = \{-2, 1, \sqrt{3}, \pi, 5\}$. Not every element of *C* is an element of $A \cup B$, because 3 is not an element of $A \cup B$. So, *C* is *not* a subset of $A \cup B$.

PRACTICE

EXAMPLE 1 on p. 715 for Exs. 1–8	OPERATIONS ON SETS Let <i>U</i> be the set of all whole numbers from 1 to 20. Let $A = \{2, 3, 5, 7, 11, 13, 17\}$, $B = \{1, 4, 9, 16\}$, and $C = \{2, 5, 8, 11, 14, 17, 20\}$. Find the indicated set.				
	1. $A \cup B$	2. $A \cap B$	3. \overline{A}	4. \overline{B}	
	5. $A \cup B \cup C$	6. $\overline{A} \cap C$	7. $\overline{C \cup B}$	8. $B \cup (A \cap C)$	
EXAMPLE 2 on p. 716 for Exs. 9–12	SUBSETS Let $A = \{-5, \pi, 10\}, B = \{-5, 1, \sqrt{5}, 10\}, \text{ and } C = \{-5, 2, \pi, 10\}.$				
	9. Is $A \subseteq B$? 10. Is A		$A \subseteq C$?	11. Is $(A \cap B) \subseteq C$?	
	12. REASONING List all the subsets of the set $A = \{-2, 4, 9\}$.				
	OPERATIONS ON SETS Consider the sets defined below. Find the indicated set.				
	U = the set of all 12 months		X = the set of all 30 day months		
	Y = the set of all	31 day months	Z = the set of all mo	Z = the set of all months ending with "r"	
	13. $X \cup Z$	14. $X \cap Y$	15. \overline{Z}	16. $\overline{X \cup Y}$	
	17. REASONING Is the set of all irrational numbers a subset of the real numbers? of the integers? <i>Explain</i> .				
	 18. RADIO Two radio towers are set up at points A and B on the map at the right. Each radio tower has a signal that can reach towns up to 50 miles away. Find the set of all towns that can receive a signal from both of the towers. ChimetegAlgebra at classzone.com 				