10.4 EXERCISES

HOMEWORK KEY

on p. WS1 for Exs. 11, 21, and 45 = TAKS PRACTICE AND REASONING Exs. 15, 34, 39, 40, 44, 47, 51, and 52

O = WORKED-OUT SOLUTIONS

Skill Practice

	1. VOCABULARY Copy and complete: The union or intersection of two events is called a(n) _?
	2. WRITING Are the events <i>A</i> and \overline{A} disjoint? <i>Explain</i> . Then give an example of a real-life event and its complement.
EXAMPLE 1	DISJOINT EVENTS Events A and B are disjoint. Find P(A or B).
on p. 707 for Exs. 3–8	3. $P(A) = 0.3, P(B) = 0.1$ 4. $P(A) = 0.55, P(B) = 0.2$ 5. $P(A) = 0.41, P(B) = 0.24$
. 101 2.01.5 0	6. $P(A) = \frac{2}{5}, P(B) = \frac{3}{5}$ 7. $P(A) = \frac{1}{3}, P(B) = \frac{1}{4}$ 8. $P(A) = \frac{2}{3}, P(B) = \frac{1}{5}$
EXAMPLES	OVERLAPPING EVENTS Find the indicated probability.
2 and 3 on p. 708 for Exs. 9–15	9. $P(A) = 0.5, P(B) = 0.35$ $P(A \text{ and } B) = 0.2$ $P(A \text{ or } B) = \underline{?}$ 10. $P(A) = 0.6, P(B) = 0.2$ $P(A \text{ or } B) = 0.7$ $P(A \text{ and } B) = \underline{?}$ 11. $P(A) = 0.28, P(B) = 0.64$ $P(A \text{ or } B) = 0.71$ $P(A \text{ and } B) = \underline{?}$
	12. $P(A) = 0.46, P(B) = 0.37$ 13. $P(A) = \frac{2}{7}, P(B) = \frac{4}{7}$ 14. $P(A) = \frac{6}{11}, P(B) = \frac{3}{11}$
	$P(A \text{ and } B) = 0.31$ $P(A \text{ and } B) = \frac{1}{7}$ $P(A \text{ or } B) = \frac{7}{11}$
	$P(A \text{ or } B) = \underline{?} \qquad P(A \text{ or } B) = \underline{?} \qquad P(A \text{ and } B) = \underline{?}$
	15. TAKS REASONING What is $P(A \text{ or } B)$ if $P(A) = 0.41$, $P(B) = 0.53$, and $P(A \text{ and } B) = 0.27$?
	(A) 0.12 (B) 0.67 (C) 0.80 (D) 0.94
EXAMPLE 4	FINDING PROBABILITIES OF COMPLEMENTS Find $P(\overline{A})$.
on p. 709 for Exs. 16–19	16. $P(A) = 0.5$ 17. $P(A) = 0$ 18. $P(A) = \frac{1}{3}$ 19. $P(A) = \frac{5}{8}$
	CHOOSING CARDS A card is randomly selected from a standard deck of 52 cards. Find the probability of drawing the given card.
	20. A king <i>and</i> a diamond (21.) A king <i>or</i> a diamond 22. A spade <i>or</i> a club
	23. A 4 or a 5 24. A 6 and a face card 25. Not a heart
	ERROR ANALYSIS <i>Describe</i> and correct the error in finding the probability of randomly drawing the given card from a standard deck of 52 cards.
	26. 27.
	$P(\text{heart or face card}) \qquad P(\text{club or 9})$
	= P(heart) + P(face card) = P(club) + P(9) + P(club and 9)
	$= \frac{13}{52} + \frac{12}{52} = \frac{13}{52} + \frac{4}{52} + \frac{1}{52}$
	$=\frac{25}{52} \qquad \qquad$