COMPLEMENTS The event \bar{A}, called the complement of event A, consists of all outcomes that are not in A. The notation \bar{A} is read as " A bar."

KEY CONCEPT

For Your Notebook

Probability of the Complement of an Event

The probability of the complement of A is $P(\bar{A})=1-P(A)$.

EXAMPLE 4 Find probabilities of complements

ANOTHER WAY

For an alternative method for solving the problem in Example 4, turn to page 714 for the Problem Solving Workshop.

DICE When two six-sided dice are rolled, there are 36 possible outcomes, as shown. Find the probability of the given event.
a. The sum is not 6 .

Solution

a. $P($ sum is not 6$)=1-P(\operatorname{sum}$ is 6$)=1-\frac{5}{36}=\frac{31}{36} \approx 0.861$
b. $P($ sum $\leq 9)=1-P(\operatorname{sum}>9)=1-\frac{6}{36}=\frac{30}{36}=\frac{5}{6} \approx 0.833$

EXAMPLE 5 Use a complement in real life

FORTUNE COOKIES A restaurant gives a free fortune cookie to every guest. The restaurant claims there are 500 different messages hidden inside the fortune cookies. What is the probability that a group of 5 people receive at least 2 fortune cookies with the same message inside?

Solution

The number of ways to give messages to the 5 people is 500^{5}. The number of ways to give different messages to the 5 people is $500 \cdot 499 \cdot 498 \cdot 497 \cdot 496$. So, the probability that at least 2 of the 5 people have the same message is:

$$
\begin{aligned}
P(\text { at least } 2 \text { are the same }) & =1-P(\text { none are the same }) \\
& =1-\frac{500 \cdot 499 \cdot 498 \cdot 497 \cdot 496}{500^{5}} \\
& \approx 0.0199
\end{aligned}
$$

Guided Practice for Examples 4 and 5

Find $P(\bar{A})$.
4. $P(A)=0.45$
5. $P(A)=\frac{1}{4}$
6. $P(A)=1$
7. $P(A)=0.03$
8. WHAT IF? In Example 5, how does the answer change if there are only 100 different messages hidden inside the fortune cookies?

