53. CHALLENGE A polygon is convex if no line that contains a side of the polygon contains a point in the interior of the polygon. Consider a convex polygon with n sides.
a. Use the combinations formula to write an expression for the number of line segments that join pairs of vertices on an n-sided polygon.

b. Use your result from part (a) to write a formula for the number of diagonals of an n-sided convex polygon.

TAKS PRACTICE at classzone.com

MIXED REVIEW FOR TAKS

REVIEW

Lesson 3.2;
TAKS Workbook
54. TAKS PRACTICE Ellen's next math test is worth 150 points and contains 42 questions. Each question is worth either 5 points or 3 points. Which system of equations can be used to determine the number f of 5 point questions and the number t of 3 point questions? TAKS Obj. 4
(A) $f-t=42$
$5 f+3 t=150$
(B) $f+t=42$
$3 f+5 t=150$
(C) $f+t=42$
$5 f+3 t=150$
(D) $f+t=42$
$5 f+5 t=150$

REVIEW

55. TAKS PRACTICE An equilateral triangle is inscribed TAKS Preparation p. 470;

TAKS Workbook in a circle with a radius of 6 centimeters. What is the approximate area of the shaded region? TAKS Obj. 8
(F) $19.6 \mathrm{~cm}^{2}$
(G) $66.3 \mathrm{~cm}^{2}$
(H) $74.9 \mathrm{~cm}^{2}$
(J) $81.9 \mathrm{~cm}^{2}$

QUIZ for Lessons 10.1-10.2

For the given license plate configuration, find how many plates are possible if letters and digits (a) can be repeated and (b) cannot be repeated. (p. 682)

1. 2 letters followed by 3 digits
2. 3 digits followed by 3 letters

Find the number of distinguishable permutations of the letters in the word. (p. 682)
3. AWAY
4. IDAHO
5. LETTER
6. TENNESSEE

Find the number of combinations. (p. 690)
7. ${ }_{8} C_{6}$
8. ${ }_{7} C_{4}$
9. ${ }_{9} C_{0}$
10. ${ }_{12} C_{11}$

Use the binomial theorem to write the binomial expansion. (p. 690)
11. $(x+5)^{5}$
12. $(2 s-3)^{6}$
13. $(3 u+v)^{4}$
14. $\left(2 x^{3}-3 y\right)^{5}$
15. Find the coefficient of x^{3} in the expansion of $(x+2)^{9}$. (p. 690)
16. MENU CHOICES A pizza parlor runs a special where you can buy a large pizza with 1 cheese, 1 vegetable, and 2 meats for $\$ 12$. You have a choice of 5 cheeses, 10 vegetables, and 6 meats. How many different variations of the pizza special are possible? (p. 682)

