EXAMPLE 7 Find a coefficient in an expansion

Find the coefficient of x^{4} in the expansion of $(3 x+2)^{10}$.

Solution

From the binomial theorem, you know the following:

$$
(3 x+2)^{10}={ }_{10} C_{0}(3 x)^{10}(2)^{0}+{ }_{10} C_{1}(3 x)^{9}(2)^{1}+\cdots+{ }_{10} C_{10}(3 x)^{0}(2)^{10}
$$

Each term in the expansion has the form ${ }_{10} C_{r}(3 x)^{10-r}(2)^{r}$. The term containing x^{4} occurs when $r=6$:

$$
{ }_{10} C_{6}(3 x)^{4}(2)^{6}=(210)\left(81 x^{4}\right)(64)=1,088,640 x^{4}
$$

- The coefficient of x^{4} is $1,088,640$.

GuIded Practice for Example 7

11. Find the coefficient of x^{5} in the expansion of $(x-3)^{7}$.
12. Find the coefficient of x^{3} in the expansion of $(2 x+5)^{8}$.

10.2 EXERCISES

O WORKED-OUT SOLUTIONS on p. WS1 for Exs. 17, 29, and 49 5 = TAKS PRACTICE AND REASONING

Exs. 35, 40, 41, 52, 54, and 55

SKILL Practice

1. VOCABULARY Copy and complete: The binomial expansion of $(a+b)^{n}$ is given by the \qquad ?.
2. WRITING Explain the difference between permutations and combinations.

EXAMPLES
1,2 , and 3 on pp. 690-691
for Exs. 3-18

COMBINATIONS Find the number of combinations.
3. ${ }_{5} C_{2}$
4. ${ }_{10} C_{3}$
5. ${ }_{9} C_{6}$
6. ${ }_{8} C_{2}$
7. ${ }_{11} C_{11}$
8. ${ }_{12} C_{4}$
9. ${ }_{7} C_{5}$
10. ${ }_{14} C_{6}$

ERROR ANALYSIS Describe and correct the error in finding the number of combinations.
11.

$$
{ }_{6} C_{2}=\frac{6!}{(6-2)!}=\frac{720}{24}=30
$$

12.

$$
{ }_{8} C_{3}=\frac{8!}{3!}=\frac{40,320}{6}=6720
$$

CARD HANDS Find the number of possible 5-card hands that contain the cards specified. The cards are taken from a standard 52-card deck.
13. 5 face cards (kings, queens, or jacks)
15. 1 ace and 4 cards that are not aces
17. At most 1 queen
14. 4 kings and 1 other card
16. 5 hearts or 5 diamonds
18. At least 1 spade

