10.2
 a.1, a. 2

Before	You used the counting principle and permutations.
Now	You will use combinations and the binomial theorem.
Why?	So you can find ways to form a set, as in Example 2.

Key Vocabulary

- combination
- Pascal's triangle
- binomial theorem

In Lesson 10.1, you learned that order is important for some counting problems. For other counting problems, order is not important. For instance, if you purchase a package of trading cards, the order of the cards inside the package is not important. A combination is a selection of r objects from a group of n objects where the order is not important.

KEY CONCEPT

For Your Notebook

Combinations of \boldsymbol{n} Objects Taken \boldsymbol{r} at a Time

The number of combinations of r objects taken from a group of n distinct objects is denoted by ${ }_{n} C_{r}$ and is given by this formula:

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!\cdot r!}
$$

EXAMPLE 1 Find combinations

CARDS A standard deck of 52 playing cards has 4 suits with 13 different cards in each suit.
a. If the order in which the cards are dealt is not important, how many different 5-card hands are possible?
b. In how many 5-card hands are all 5 cards of the same color?

Solution

a. The number of ways to choose 5 cards from a deck of 52 cards is:
${ }_{52} C_{5}=\frac{52!}{47!\cdot 5!}=\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48 \cdot 47!}{-47!\cdot 5!}=2,598,960$
b. For all 5 cards to be the same color, you need to choose 1 of the 2 colors and then 5 of the 26 cards in that color. So, the number of possible hands is:
${ }_{2} C_{1} \cdot{ }_{26} C_{5}=\frac{2!}{1!\cdot 1!} \cdot \frac{26!}{21!\cdot 5!}=\frac{2}{1 \cdot 1} \cdot \frac{26 \cdot 25 \cdot 24 \cdot 23 \cdot 22 \cdot 21!}{21!\cdot 5!}=131,560$

