KEY CONCEPT

Permutations of \boldsymbol{n} Objects Taken \boldsymbol{r} at a Time

The number of permutations of r objects taken from a group of n distinct objects is denoted by ${ }_{n} P_{r}$ and is given by this formula:

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

EXAMPLE 5 Find permutations of \boldsymbol{n} objects taken r at a time

MUSIC You are burning a demo CD for your band. Your band has 12 songs stored on your computer. However, you want to put only 4 songs on the demo CD. In how many orders can you burn 4 of the 12 songs onto the CD ?

Solution

Find the number of permutations of 12 objects taken 4 at a time.

$$
\begin{aligned}
& \qquad{ }_{12} P_{4}=\frac{12!}{(12-4)!}=\frac{12!}{8!}=\frac{479,001,600}{40,320}=11,880 \\
& \text { You can burn } 4 \text { of the } 12 \text { songs in } 11,880 \text { different orders. }
\end{aligned}
$$

EVALUATE

PERMUTATIONS Most scientific and graphing calculators have a key or menu item for evaluating ${ }_{n} P_{r}$.

Guided Practice for Example 5

Find the number of permutations.
4. ${ }_{5} P_{3}$
5. ${ }_{4} P_{1}$
6. ${ }_{8} P_{5}$
7. ${ }_{12} P_{7}$

PERMUTATIONS WITH REPETITION If you consider the letters \mathbf{E} and \mathbf{E} to be distinct, there are six permutations of the letters \mathbf{E}, \mathbf{E}, and \mathbf{Y} :

EEY	EYE	YEE
EEY	EYE	YEE

However, if the two occurrences of E are considered interchangeable, then there are only three distinguishable permutations:

EEY EYE YEE
Each of these permutations corresponds to two of the original six permutations because there are 2 !, or 2 , permutations of \mathbb{E} and \mathbb{E}. So, the number of permutations of \mathbf{E}, \mathbf{E}, and \mathbf{Y} can be written as $\frac{3!}{2!}=\frac{6}{2}=3$.

KEY CONCEPT
 For Your Notebook

Permutations with Repetition

The number of distinguishable permutations of n objects where one object is repeated s_{1} times, another is repeated s_{2} times, and so on, is:

$$
\frac{n!}{s_{1}!\cdot s_{2}!\cdot \ldots \cdot s_{k}!}
$$

