TAKS Obj. 7 TEKS G.7.A

REVIEWING COORDINATE GEOMETRY

Coordinate geometry is the algebraic study of geometry that uses the coordinate plane to represent position.

A coordinate plane is a plane divided into four quadrants by the x-axis and the y-axis. It is used to plot ordered pairs of the form (x, y).
Coordinate geometry problems include:

- using a coordinate plane to classify a two-dimensional figure
- identifying characteristics, such as vertices and lines of symmetry, of a two-
 dimensional figure in a coordinate plane
- performing transformations in a coordinate plane

EXAMPLE

Quadrilateral $M N P Q$ has vertices $M(2,1), N(7,2), P(8,7)$, and $Q(3,6)$. What type of quadrilateral is $M N P Q$?

Solution

To classify the quadrilateral, first draw it in a coordinate plane, as shown at the right.
Second, find the side lengths.

$$
\begin{aligned}
& M N=\sqrt{(7-2)^{2}+(2-1)^{2}}=\sqrt{5^{2}+1^{2}}=\sqrt{26} \\
& N P=\sqrt{(8-7)^{2}+(7-2)^{2}}=\sqrt{1^{2}+5^{2}}=\sqrt{26} \\
& P Q=\sqrt{(3-8)^{2}+(6-7)^{2}}=\sqrt{(-5)^{2}+(-1)^{2}}=\sqrt{26} \\
& Q M=\sqrt{(2-3)^{2}+(1-6)^{2}}=\sqrt{(-1)^{2}+(-5)^{2}}=\sqrt{26}
\end{aligned}
$$

Because the four sides are congruent, $M N P Q$ is a rhombus.
To decide whether $M N P Q$ is also a square, find the slope of each side and use the slopes to determine if adjacent sides are perpendicular.

$$
\begin{array}{ll}
m_{M N}=\frac{2-1}{7-2}=\frac{1}{5} & m_{N P}=\frac{7-2}{8-7}=\frac{5}{1}=5 \\
m_{P Q}=\frac{6-7}{3-8}=\frac{-1}{-5}=\frac{1}{5} & m_{Q M}=\frac{1-6}{2-3}=\frac{-5}{-1}=5
\end{array}
$$

The slopes of adjacent sides are not negative reciprocals of each other, so adjacent sides are not perpendicular. Therefore, $M N P Q$ is not a square.

- Quadrilateral $M N P Q$ is a rhombus.

