

Graph and Write Equations of Ellipses

pp. 634-639

EXAMPLE

Graph $4x^2 + y^2 = 16$. Identify the vertices, co-vertices, and foci.

- **STEP 1** Rewrite $4x^2 + y^2 = 16$ in standard form as $\frac{x^2}{4} + \frac{y^2}{16} = 1$.
- **STEP 2 Identify** the vertices, co-vertices, and foci. Note that $a^2 = 16$ and $b^2 = 4$, so a = 4, b = 2, and $c^2 = a^2 - b^2 = 12$, or $c \approx 3.5$. The major axis is vertical. The vertices are at $(0, \pm 4)$. The co-vertices are at $(\pm 2, 0)$. The foci are at $(0, \pm 3.5)$.

STEP 3 Draw the ellipse.

EXERCISES

EXAMPLES

on pp. 635-636 for Exs. 21-25

1, 2, and 4

Graph the equation. Identify the vertices, co-vertices, and foci of the ellipse.

21.
$$16x^2 + 25y^2 = 400$$

22.
$$81x^2 + 9y^2 = 729$$

23.
$$64x^2 + 36y^2 = 2304$$

Write an equation of the ellipse with the given characteristics and center at (0,0).

24. Vertex: (-6, 0); co-vertex: (0, -3)

25. Vertex: (0, -8); focus: (0, 5)

9.5 **Graph and Write Equations of Hyperbolas**

pp. 642-648

EXAMPLE

Graph $4x^2 - 9y^2 = 36$. Identify the vertices, foci, and asymptotes.

- **STEP 1** Rewrite $4x^2 9y^2 = 36$ in standard form as $\frac{x^2}{9} \frac{y^2}{4} = 1$.
- **STEP 2 Identify** the vertices, foci, and asymptotes. Note that $a^2 = 9$ and $b^2 = 4$, so a = 3, b = 2, and $c^2 = a^2 + b^2 = 13$, or $c \approx 3.6$. The transverse axis is horizontal. The vertices are at $(\pm 3, 0)$. The foci are at $(\pm 3.6, 0)$. The asymptotes are $y = \pm \frac{b}{a}x = \pm \frac{2}{3}x$.

STEP 3 Draw asymptotes through opposite corners of a rectangle centered at (0, 0) that is 2a = 6 units wide and 2b = 4 units high. Draw the hyperbola.

EXERCISES

Graph the equation. Identify the vertices, foci, and asymptotes.

26.
$$9x^2 - y^2 = 9$$

27.
$$4x^2 - 16y^2 = 64$$

27.
$$4x^2 - 16y^2 = 64$$
 28. $100y^2 - 36x^2 = 3600$

Write an equation of the hyperbola with the given foci and vertices.

29. Foci:
$$(0, \pm 5)$$
; vertices: $(0, \pm 2)$

30. Foci:
$$(\pm 9, 0)$$
; vertices: $(\pm 4, 0)$

EXAMPLES 1 and 2

on p. 643