9.4 Graph and Write Equations of Ellipses

EXAMPLE

Graph $4 x^{2}+y^{2}=16$. Identify the vertices, co-vertices, and foci.
STEP 1 Rewrite $4 x^{2}+y^{2}=16$ in standard form as $\frac{x^{2}}{4}+\frac{y^{2}}{16}=1$.
STEP 2 Identify the vertices, co-vertices, and foci. Note that $a^{2}=16$ and $b^{2}=4$, so $a=4, \boldsymbol{b}=2$, and $c^{2}=\boldsymbol{a}^{2}-\boldsymbol{b}^{2}=12$, or $c \approx 3.5$. The major axis is vertical. The vertices are at $(0, \pm 4)$. The co-vertices are at $(\pm 2,0)$. The foci are at $(0, \pm 3.5)$.

STEP 3 Draw the ellipse.

EXERCISES

EXAMPLES

1,2 , and 4
on pp. 635-636
for Exs. 21-25

Graph the equation. Identify the vertices, co-vertices, and foci of the ellipse.
21. $16 x^{2}+25 y^{2}=400$
22. $81 x^{2}+9 y^{2}=729$
23. $64 x^{2}+36 y^{2}=2304$

Write an equation of the ellipse with the given characteristics and center at $(0,0)$.
24. Vertex: $(-6,0)$; co-vertex: $(0,-3)$
25. Vertex: $(0,-8)$; focus: $(0,5)$

9.5 Graph and Write Equations of Hyperbolas

EXAMPLE

Graph $4 x^{2}-9 y^{2}=36$. Identify the vertices, foci, and asymptotes.
STEP 1 Rewrite $4 x^{2}-9 y^{2}=36$ in standard form as $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$.
STEP 2 Identify the vertices, foci, and asymptotes. Note that $a^{2}=9$ and $b^{2}=4$, so $a=3, \boldsymbol{b}=2$, and $c^{2}=a^{2}+b^{2}=13$, or $\boldsymbol{c} \approx 3.6$. The transverse axis is horizontal. The vertices are at $(\pm 3,0)$. The foci are at $(\pm 3.6,0)$. The asymptotes are $y= \pm \frac{b}{a} x= \pm \frac{2}{3} x$.

STEP 3 Draw asymptotes through opposite corners of a rectangle centered at $(0,0)$ that is $2 a=6$ units wide and $2 b=4$ units high. Draw the hyperbola.

EXERCISES

EXAMPLES
1 and 2
on p. 643
for Exs. 26-30

Graph the equation. Identify the vertices, foci, and asymptotes.
26. $9 x^{2}-y^{2}=9$
27. $4 x^{2}-16 y^{2}=64$
28. $100 y^{2}-36 x^{2}=3600$

Write an equation of the hyperbola with the given foci and vertices.
29. Foci: $(0, \pm 5)$; vertices: $(0, \pm 2)$
30. Foci: $(\pm 9,0)$; vertices: $(\pm 4,0)$

