- CHAPTIER REVIEWY

9.2 Graph and Write Equations of Parabolas

EXAMPLE

Graph $x=\frac{1}{12} y^{2}$. Identify the focus, directrix, and axis of symmetry.
STEP 1 Rewrite $x=\frac{1}{12} y^{2}$ in standard form as $y^{2}=12 x$.
STEP 2 Identify the focus, directrix, and axis of symmetry. The equation has the form $y^{2}=4 p x$ with $4 p=12$, so $p=3$. The focus is $(p, 0)$, or $(3,0)$, and the directrix is $x=-p$, or $x=-3$. Because y is squared, the axis of symmetry is the x-axis.

STEP 3 Draw the parabola. Because $p>0$, the parabola opens to the right. Some points on the parabola are (0,0), $(1, \pm 3.46)$, and $(2, \pm 4.90)$.

EXERCISES

EXAMPLES

1 and 2
on p. 621
for Exs. 9-14

Graph the equation. Identify the focus, directrix, and axis of symmetry of the parabola.
9. $x^{2}=16 y$
10. $y^{2}=-6 x$
11. $x^{2}+4 y=0$

Write the standard form of the equation of the parabola with the given focus or directrix and vertex at $(0,0)$.
12. Focus: $(-5,0)$
13. Focus: $(0,3)$
14. Directrix: $x=-6$

9.3 Graph and Write Equations of Circles

EXAMPLE

Graph $x^{2}=64-y^{2}$. Identify the radius of the circle.
STEP 1 Rewrite $x^{2}=64-y^{2}$ in standard form as $x^{2}+y^{2}=64$.

STEP 2 Identify the radius. The graph is a circle with center at the origin and radius $r=\sqrt{64}=8$.

STEP 3 Draw a circle passing through points that are 8 units from the origin, such as $(8,0),(0,8)$, $(-8,0)$, and $(0,-8)$.

EXAMPLES

1 and 2
on pp. 626-627
for Exs. 15-20

EXERCISES

Graph the equation. Identify the radius of the circle.
15. $x^{2}+y^{2}=81$
16. $x^{2}=40-y^{2}$
17. $3 x^{2}+3 y^{2}=147$

Write the standard form of the equation of the circle that passes through the given point and whose center is the origin.
18. $(5,9)$
19. $(-8,2)$
20. $(-7,-4)$

