9

CHAPTER REVIEW

- Multi-Language Glossary
- Vocabulary practice

REVIEW KEY VOCABULARY

- distance formula, p. 614
- midpoint formula, p. 615
- focus, foci, pp. 620, 634, 642
- directrix, p. 620
- circle, p. 626
- center, pp. 626, 634, 642
- radius, p. 626

- ellipse, p. 634
- vertices, pp. 634, 642
- major axis, p. 634
- · co-vertices, p. 634
- minor axis, p. 634
- hyperbola, p. 642

- transverse axis, p. 642
- conic sections, p. 650
- general second-degree equation, p. 653
- discriminant, p. 653
- quadratic system, p. 658

VOCABULARY EXERCISES

- 1. Copy and complete: A(n) _? is the set of all points in a plane equidistant from a point called the focus and a line called the directrix.
- **2.** Copy and complete: The line segment joining the two co-vertices of an ellipse is the <u>?</u>.
- **3.** Copy and complete: The line segment joining the two vertices of a hyperbola is the _?_.
- **4. WRITING** *Describe* how the asymptotes of a hyperbola help you draw the hyperbola.

REVIEW EXAMPLES AND EXERCISES

Use the review examples and exercises below to check your understanding of the concepts you have learned in each lesson of Chapter 9.

9.1 Apply the Distance and Midpoint Formulas

pp. 614-619

EXAMPLE

Find the distance between (-5, 3) and (1, -3). Then find the midpoint of the line segment joining the two points.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(1 - (-5))^2 + (-3 - 3)^2} = \sqrt{72} = 6\sqrt{2} \approx 8.49$$

$$M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right) = \left(\frac{-5+1}{2}, \frac{3+(-3)}{2}\right) = (-2, 0)$$

EXERCISES

EXAMPLES
1 and 3

on pp. 614–615 for Exs. 5–8 Find the distance between the two points. Then find the midpoint of the line segment joining the two points.

- 5. (-6, -5), (2, -3)
- **6.** (-2, 5), (1, 9)
- 7. (-3, -4), (2, 5)
- **8. SKYDIVING** A skydiver lands 200 yards west and 40 yards north of a target. A second skydiver lands 30 yards east and 140 yards south of the same target. How far from each other do the two skydivers land?