Extension
 Use atíar lassom or

Key Vocabulary - eccentricity

Determine Eccentricity of Conic Sections =nas a.

GOAL Find and apply the eccentricity of a conic section.
In an ellipse that is nearly circular, the ratio $c: a$ is close to 0 . In a more oval ellipse, $c: a$ is close to 1 . This ratio is the eccentricity of the ellipse. Every conic has an eccentricity e associated with it.

KEY CONCEPT
For Your Notebook

Eccentricity of Conic Sections

The eccentricity of each conic section is defined below. For an ellipse or hyperbola, c is the distance from each focus to the center, and a is the distance from each vertex to the center.

Circle: $e=0 \quad$ Parabola: $e=1$
Ellipse: $e=\frac{c}{a}$, and $0<e<1$
Hyperbola: $e=\frac{c}{a}$, and $e>1$

EXAMPLE 1 Find eccentricity

Find the eccentricity of the conic section represented by the equation.
a. $(x+3)^{2}+(y-1)^{2}=25$
b. $\frac{(x+4)^{2}}{36}+\frac{(y-2)}{16}=1$

Solution

a. Because this equation represents a circle, the eccentricity is $e=0$.
b. This equation represents an ellipse with $a=\sqrt{36}=6, b=\sqrt{16}=4$, and $c=\sqrt{a^{2}-b^{2}}=2 \sqrt{5}$. The eccentricity is $e=\frac{c}{a}=\frac{2 \sqrt{5}}{6} \approx 0.745$.

EXAMPLE 2 Use eccentricity to write an equation

Write an equation of a hyperbola with center $(-2,6)$, vertex $(6,6)$, and $e=2$.

Solution

Use the form $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$. The vertex lies $6-(-2)=8$ units from the center, so $a=8$. Because $e=\frac{c}{a}=2$, you know that $\frac{c}{8}=2$, or $c=16$. So, $b^{2}=c^{2}-a^{2}=256-64=192$. The equation is $\frac{(x+2)^{2}}{64}-\frac{(y-6)^{2}}{192}=1$.

