

QUIZ for Lessons 9.6–9.7

Write an equation of the conic section. (p. 650)

- 1. Ellipse with vertices at (3, -10) and (3, 6) and foci at (3, -7) and (3, 3)
- **2.** Parabola with vertex at (-5, 2) and focus at (-5, -1)
- **3.** Hyperbola with foci at (-3, 1) and (6, 1) and vertices at (0, 1) and (3, 1)

Classify the conic section and write its equation in standard form. Then graph the equation. (p. 650)

4. $9x^2 - 4y^2 - 36x - 32y - 64 = 0$ **5.** $-x^2 - y^2 - 4x + 12y + 129 = 0$ **6.** $x^2 + 6x - y + 16 = 0$ **7.** $12x^2 + 45y^2 + 120x + 90y - 150 = 0$

Solve the system. (p. 658)

- 8. $x + 2y^2 = -6$ x + 8y = 09. $x^2 + 4x + y^2 + 6y = 12$ 2x - y = 410. $x^2 - y - 4 = 0$ $x^2 + 3y^2 - 4y - 10 = 0$ 11. $y^2 - 6x - 2y - 3 = 0$ $2y^2 - 4y + x + 6 = 0$ 12. $y^2 - 4x^2 - 4y = 0$ $2x^2 + y^2 - 8x - 4y = -8$ 13. $16x^2 + 9y^2 + 32x - 18y = 119$ $x^2 + y^2 + 2x + 6y = 15$
- 14. **RADAR** A radar station reports that a ship is 10 miles away. At the same time, a second station 20 miles east and 15 miles north of the first one reports that the ship is 15 miles away. Write and solve a system of equations to locate the ship relative to the first station. Is only one location possible? *Explain. (p. 658)*

