
EXAMPLES	SOLVING QUADRATIC SYSTEMS Solve the system.				
3 and 4 on p. 660 for Exs. 22–35	22. $6x^2 - y^2 - 15 = 0$ $x^2 + y^2 - 13 = 0$		$5y^2 - 125 = 0$ - 5 = 0	24. $10y = x^2$ $x^2 - 6 = -2$	
	25. $x^2 - y^2 - 4x + 2 = 0$ $-x^2 + y^2 - 4y + 2 = 0$			27. $x^2 + 2y^2 - 10 = 0$ $4y^2 + x + 4 = 0$	
	28. $x^2 + y^2 - 16x + 39 = 0$ $x^2 - y^2 - 9 = 0$		-8x + 8y = 24 $-8x - 8y = -24$	30. $16x^2 - y^2 + 16y - 128 = 0$ $y^2 - 48x - 16y - 32 = 0$	
	31. $4x^2 - 56x + 9y^2 = -160$ $4x^2 + y^2 - 64 = 0$	32. $x^2 - y^2$ $y^2 - x^2$	-32x + 128 = 0 -8y + 8 = 0	33. $y^2 + x - 3 = 0$ $x^2 - 4x + 3y + 1 = 0$	
	34. TAKS REASONING How many solutions does the system consisting of the equations $x^2 + y^2 + 6x = 0$ and $y^2 + x - 6 = 0$ have?				
	(A) 0 (B)	1	C 2	D 4	
	correct the error in using s to begin solving the system Then solve the system. $x^2 + y^2 - 2x - 2y = -1$	$x^2 + y^2 - 2x - 2y = -1$ Equation 1		Solve Equation 2 for x: $x = 1 - y^2$ Substitute for x in Equation 1: $(1 - y^2)^2 + y^2 - 2(1 - y^2) - 2y = -1$ $1 - 2y^2 + y^2 + y^2 - 2 + 2y^2 - 2y = -1$ $2y^2 - 2y = 0$	
	36. REASONING Solve the system consisting of the equations $\frac{x^2}{2} + \frac{y^2}{4} = 1$ and $4y^2 = 16 - 8x^2$. What do you notice?				
	37. GRAPHING CALCULATOR Consider the system consisting of the equations $3y^2 + x^2 + 4x + 18y = -28$ and $9y^2 - 4x^2 + 8x + 90y = -185$. Solve each equation for <i>y</i> . Then use a graphing calculator to solve the system.				
	38 CHALLENCE Solve the syst	em r	$v^{2} + v^{2} = 1$	Equation 1	

- **38. CHALLENGE** Solve the system of three equations shown.
- $x^{2} + y^{2} = 1$ $x^{2} + y^{2} + 4x + 4y - 5 = 0$ x + y - 1 = 0Equation 1 Equation 2 Equation 3

PROBLEM SOLVING

EXAMPLE 2 on p. 659 for Exs. 39–41 **39. TRAFFIC SAFETY** A car passes a parked police car and continues at a constant speed *r*. The police car begins accelerating at a constant rate when it is passed. The diagram indicates the distance *d* (in miles) the police car travels as a function of time *t* (in minutes) after being passed. Write and solve a system of equations to find how long it takes the police car to catch up to the other car.

662

