EXAMPLE 3 Solve a quadratic system by elimination

ANOTHER WAY You can also solve by substitution: Solve Equation 2 for y^{2}, then substitute the result in Equation 1.

Solve the system by elimination.
$9 x^{2}+y^{2}-90 x+216=0$
Equation 1
Equation 2

Solution

Add the equations to eliminate the y^{2}-term and obtain a quadratic equation in x.

$$
\begin{array}{rll}
9 x^{2}+y^{2}-90 x+216 & =0 & \\
x^{2}-y^{2}-16 & =0 & \\
\hline 10 x^{2}-90 x+200 & =0 & \\
\text { Add. } \\
x^{2}-9 x+20=0 & & \text { Divide each side by } 10 . \\
(x-4)(x-5)=0 & & \text { Factor. } \\
x=4 \text { or } x=5 & & \text { Zero product property }
\end{array}
$$

When $x=4, y=0$. When $x=5, y= \pm 3$.
The solutions are $(4,0),(5,3)$, and $(5,-3)$, as shown.

EXAMPLE 4 Solve a real-life quadratic system

NAVIGATION A ship uses LORAN (long-distance radio navigation) to find its position. Radio signals from stations A and B locate the ship on the blue hyperbola, and signals from stations B and C locate the ship on the red hyperbola. The equations of the hyperbolas are given below. Find the ship's position if it is east of the y-axis.

$$
\begin{array}{ll}
x^{2}-y^{2}-16 x+32=0 & \text { Equation } 1 \\
-x^{2}+y^{2}-8 y+8=0 & \text { Equation } 2
\end{array}
$$

Solution

STEP 1 Add the equations to eliminate the x^{2} - and y^{2}-terms.

$$
\begin{array}{rlrl}
x^{2}-y^{2}-16 x+32 & =0 & & \\
-x^{2}+y^{2}-8 y+8 & =0 \\
\hline-16 x-8 y+40 & =0 & & \text { Add. } \\
y & =-2 x+5 & & \text { Solve for } y .
\end{array}
$$

STEP 2 Substitute $-2 x+5$ for y in Equation 1 and solve for x.

$$
\begin{aligned}
x^{2}-y^{2}-16 x+32=0 & \text { Equation } 1 \\
x^{2}-(-2 x+5)^{2}-16 x+32=0 & \text { Substitute for } y \\
3 x^{2}-4 x-7=0 & \text { Simplify. } \\
(x+1)(3 x-7)=0 & \text { Factor. } \\
x=-1 \text { or } x=\frac{7}{3} & \text { Zero product property }
\end{aligned}
$$

STEP 3 Substitute for x in $y=-2 x+5$ to find the solutions $(-1,7)$ and $\left(\frac{7}{3}, \frac{1}{3}\right)$.

- Because the ship is east of the y-axis, it is at $\left(\frac{7}{3}, \frac{1}{3}\right)$.

