EXAMPLE 6
on p. 653
for Exs. 28-36

CLASSIFYING CONICS Use the discriminant to classify the conic section.
28. $6 x^{2}-2 y^{2}+24 x+2 y-1=0$
29. $x^{2}+y^{2}-10 x-6 y+18=0$
30. $y^{2}-10 y-5 x+57=0$
31. $4 x^{2}+y^{2}-48 x-14 y+189=0$
32. $9 x^{2}+4 y^{2}+8 y+18 x-41=0$
33. $x^{2}-18 x+6 y+99=0$
34. $x^{2}+y^{2}-6 x+8 y-24=0$
35. $8 x^{2}-9 y^{2}-40 x+4 y+145=0$
36. TAKS REASONING The equation $4 x^{2}+y^{2}+32 x-10 y+85=0$ represents what conic section?
(A) Circle
(B) Ellipse
(C) Hyperbola
(D) Parabola

EXAMPLES

6 and 7
on pp. 653-654
for Exs. 37-44

CLASSIFYING AND GRAPHING Classify the conic section and write its equation

 in standard form. Then graph the equation.37. $x^{2}+y^{2}-14 x+4 y-11=0$
38. $x^{2}+4 y^{2}-10 x+16 y+37=0$
39. $x^{2}-16 x-8 y+80=0$
40. $9 y^{2}-x^{2}-54 y+8 x+56=0$
41. $9 x^{2}+4 y^{2}-36 x-24 y+36=0$
42. $y^{2}+14 y+16 x+33=0$
43. $x^{2}+y^{2}+16 x-8 y+16=0$
44. $x^{2}-4 y^{2}+8 x-24 y-24=0$
45. TAKS REASONING Consider a general second-degree equation where $B=0$. Explain how you can classify the equation's graph without graphing or using the discriminant.
46. REASONING In Chapter 8, you graphed hyperbolas with equations of the form $y=\frac{a}{x}$. Write $y=\frac{a}{x}$ as a general second-degree equation, and use the discriminant to show that the graph is a hyperbola.
47. Challenge Find expressions in terms of c, h, and k for the coordinates of the foci of a hyperbola with a vertical transverse axis and center (h, k). Then find equations of the asymptotes in terms of a, b, h, and k.

PROBLEM SOLVING

EXAMPLES
3 and 4
on pp. 651-652
for Ex. 48

EXAMPLES
6 and 7
on pp. 653-654
for Exs. 49-50
48. ICE SKATING A figure skater practices skating figure eights, which are formed by etching two externally tangent circles in the ice. Write equations for the circles in a figure eight if each is 8 feet in diameter, the circles intersect at the origin, and the centers of the circles are on the y-axis.

TEXAS @HomeTutor for problem solving help at classzone.com
49. JUMPING STILTS The leap of a person wearing "jumping stilts" is modeled by $x^{2}-10 x+4 y=0$ where x and y are in feet and the origin marks the start of the leap. Write an equation in standard form for the path of the leap. How high and how far does the person jump?
TEXAS @HomeTutor for problem solving help at classzone.com
50. SPACECRAFT A spacecraft uses Saturn's gravitational force to "slingshot" around the planet on the path $21 y^{2}-210 y-4 x^{2}=-441$, where the origin represents Saturn's center and x and y are in hundreds of thousands of kilometers. What is the shape of the path? Write an equation in standard form for the path. Then graph the equation.

