SKILL PRACTICE

EXAMPLES

 1 and 2on pp. 650-651
for Exs. 3-12

EXAMPLES 3 and 4
on pp. 651-652
for Exs. 13-21

EXAMPLE 5
on p. 652
for Exs. 22-27

1. VOCABULARY Explain why circles, ellipses, parabolas, and hyperbolas are called conic sections.
2. WRITING Explain how the discriminant of a general second-degree equation can be used to identify what conic the equation represents.

GRAPHING Graph the equation. Identify the important characteristics of the graph.
3. $(x+4)^{2}=-8(y-2)$
4. $(x-2)^{2}+(y-7)^{2}=9$
5. $\frac{(x-6)^{2}}{25}-(y+1)^{2}=1$
6. $\frac{(y+4)^{2}}{49}-\frac{(x+8)^{2}}{9}=1$
7. $\frac{(x+2)^{2}}{16}+\frac{(y-2)^{2}}{36}=1$
8. $(x-5)^{2}+(y+1)^{2}=64$
9. $(y-1)^{2}=4(x+6)$
10. $\frac{x^{2}}{25}+\frac{(y-2)^{2}}{4}=1$
11. $\frac{(x+3)^{2}}{9}-\frac{(y-4)^{2}}{16}=1$
12. TAKS REASONing What are the coordinates of the co-vertices of the ellipse with equation $\frac{(x-4)^{2}}{16}+\frac{(y-1)^{2}}{4}=1$?
(A) $(0,1),(8,1)$
(B) $(-8,1),(0,1)$
(C) $(4,3),(4,-1)$
(D) $(-4,3),(-4,-1)$

WRITING EQUATIONS Write an equation of the conic section.

13. Circle with center at $(-5,1)$ and radius 6
14. Circle with center at $(9,-1)$ and radius 2
15. Parabola with vertex at $(-4,-3)$ and focus at $(1,-3)$
16. Parabola with vertex at $(5,3)$ and directrix $y=6$
17. Ellipse with vertices at $(-3,4)$ and $(5,4)$ and foci at $(-1,4)$ and $(3,4)$
18. Ellipse with vertices at $(-2,1)$ and $(-2,9)$ and co-vertices at $(-4,5)$ and $(0,5)$
19.) Hyperbola with vertices at $(6,-3)$ and $(6,1)$ and foci at $(6,-6)$ and $(6,4)$
19. Hyperbola with vertices at $(1,7)$ and $(7,7)$ and foci at $(-1,7)$ and $(9,7)$
20. ERROR ANALYSIS Describe and correct the error in writing an equation of the ellipse with vertices at $(-7,3)$ and $(3,3)$ and co-vertices at $(-2,6)$ and $(-2,0)$.

$$
\begin{aligned}
& \text { Axis is horizontal; }(h, k)=(-2,3) \\
& a=|-7-(-2)|=5 ; b=|6-3|=3 \\
& \text { Equation: } \frac{(x-2)^{2}}{25}+\frac{(y+3)^{2}}{9}=1
\end{aligned}
$$

LINES OF SYMMETRY Identify the line(s) of symmetry for the conic section.
22. $\frac{(x+5)^{2}}{49}+\frac{(y-2)^{2}}{16}=1$
23. $(y-4)^{2}=6(x+6)$
24. $\frac{(x-1)^{2}}{36}-\frac{(y-2)^{2}}{9}=1$
25. $(y-5)^{2}-\frac{(x-3)^{2}}{9}=1$
26. $(x+3)^{2}=10(y-1)$
27. $(x+2)^{2}+(y+1)^{2}=121$

