

EXAMPLE 7) TAKS REASONING: Multi-Step Problem

PHYSICAL SCIENCE In a lab experiment, you record images of a steel ball rolling past a magnet. The equation $16x^2 - 9y^2 - 96x + 36y - 36 = 0$ models the ball's path.

- What is the shape of the path?
- Write an equation for the path in standard form.
- Graph the equation of the path.

Solution

STEP 1 Identify the shape. The equation is a general second-degree equation with A = 16, B = 0, and C = -9. Find the value of the discriminant.

 $B^2 - 4AC = 0^2 - 4(16)(-9) = 576$

Because $B^2 - 4AC > 0$, the shape of the path is a hyperbola.

STEP 2 Write an equation. To write an equation of the hyperbola, complete the square in both *x* and *y* simultaneously.

$$16x^{2} - 9y^{2} - 96x + 36y - 36 = 0$$

$$(16x^{2} - 96x) - (9y^{2} - 36y) = 36$$

$$16(x^{2} - 6x + ?) - 9(y^{2} - 4y + ?) = 36 + 16(?) - 9(?)$$

$$16(x^{2} - 6x + 9) - 9(y^{2} - 4y + 4) = 36 + 16(9) - 9(4)$$

$$16(x - 3)^{2} - 9(y - 2)^{2} = 144$$

$$\frac{(x - 3)^{2}}{9} - \frac{(y - 2)^{2}}{16} = 1$$

STEP 3 Graph the equation. From the equation, the transverse axis is horizontal, (h, k) = (3, 2), $a = \sqrt{9} = 3$, and $b = \sqrt{16} = 4$. The vertices are at $(3 \pm a, 2)$, or (6, 2) and (0, 2).

Plot the center and vertices. Then draw a rectangle 2a = 6 units wide and 2b = 8 units high centered at (3, 2), draw the asymptotes, and draw the hyperbola.

Notice that the path of the ball is modeled by just the right-hand branch of the hyperbola.

GUIDED PRACTICE for Examples 6 and 7

Classify the conic section and write its equation in standard form. Then graph the equation.

10.
$$x^2 + y^2 - 2x + 4y + 1 = 0$$

12.
$$y^2 - 4y - 2x + 6 = 0$$

- 11. $2x^2 + y^2 4x 4 = 0$ 13. $4x^2 - y^2 - 16x - 4y - 4 = 0$
- 14. **ASTRONOMY** An asteroid's path is modeled by $4x^2 6.25y^2 12x 16 = 0$ where *x* and *y* are in astronomical units from the sun. Classify the path and write its equation in standard form. Then graph the equation.

AVOID ERRORS

To complete the square in two variables, you must add a quantity to or subtract a quantity from each side for *each* variable.