AVOID ERRORS

 To complete the square in two variables, you must add a quantity to or subtract a quantity from each side for each variable.
Example 7 TAKS REASONING: Multi-Step Problem

PHYSICAL SCIENCE In a lab experiment, you record images of a steel ball rolling past a magnet. The equation $16 x^{2}-9 y^{2}-96 x+36 y-36=0$ models the ball's path.

- What is the shape of the path?
- Write an equation for the path in standard form.
- Graph the equation of the path.

Solution

STEP 1 Identify the shape. The equation is a general second-degree equation with $A=16, B=0$, and $C=-9$. Find the value of the discriminant.

$$
B^{2}-4 A C=0^{2}-4(16)(-9)=576
$$

Because $B^{2}-4 A C>0$, the shape of the path is a hyperbola.
STEP 2 Write an equation. To write an equation of the hyperbola, complete the square in both x and y simultaneously.

$$
\begin{aligned}
16 x^{2}-9 y^{2}-96 x+36 y-36 & =0 \\
\left(16 x^{2}-96 x\right)-\left(9 y^{2}-36 y\right) & =36 \\
16\left(x^{2}-6 x+\text { ? }\right)-9\left(y^{2}-4 y+\text { ? }\right) & =36+16(\text { ? })-9(\text { ? }) \\
16\left(x^{2}-6 x+9\right)-9\left(y^{2}-4 y+4\right) & =36+16(9)-9(4) \\
16(x-3)^{2}-9(y-2)^{2} & =144 \\
\frac{(x-3)^{2}}{9}-\frac{(y-2)^{2}}{16} & =1
\end{aligned}
$$

STEP 3 Graph the equation. From the equation, the transverse axis is horizontal, $(h, k)=(3,2)$, $a=\sqrt{9}=3$, and $b=\sqrt{16}=4$. The vertices are at $(3 \pm a, 2)$, or $(6,2)$ and $(0,2)$.

Plot the center and vertices. Then draw a rectangle $2 a=6$ units wide and $2 b=8$ units high centered at $(3,2)$, draw the asymptotes, and draw the hyperbola.

Notice that the path of the ball is modeled by just the right-hand branch of the hyperbola.

GuIded Practice for Examples 6 and 7

Classify the conic section and write its equation in standard form. Then graph the equation.
10. $x^{2}+y^{2}-2 x+4 y+1=0$
11. $2 x^{2}+y^{2}-4 x-4=0$
12. $y^{2}-4 y-2 x+6=0$
13. $4 x^{2}-y^{2}-16 x-4 y-4=0$
14. ASTRONOMY An asteroid's path is modeled by $4 x^{2}-6.25 y^{2}-12 x-16=0$ where x and y are in astronomical units from the sun. Classify the path and write its equation in standard form. Then graph the equation.

