GUIDED PRACTICE for Examples 3, 4, and 5

Write an equation of the conic section.

- **5.** Parabola with vertex at (3, -1) and focus at (3, 2)
- **6.** Hyperbola with vertices at (-7, 3) and (-1, 3) and foci at (-9, 3) and (1, 3)

Identify the line(s) of symmetry for the conic section.

7.
$$\frac{(x-5)^2}{64} + \frac{y^2}{16} = 1$$
 8. $(x+5)^2 = 8(y-2)$ 9. $\frac{(x-1)^2}{49} - \frac{(y-2)^2}{121} = 1$

KEY CONCEPT

For Your Notebook

Classifying Conics Using Their Equations

Any conic can be described by a **general second-degree equation** in *x* and *y*: $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$. The expression $B^2 - 4AC$ is the **discriminant** of the equation and can be used to identify the type of conic.

Discriminant	Type of Conic
$B^2 - 4AC < 0, B = 0, \text{ and } A = C$	Circle
$B^2 - 4AC < 0$ and either $B \neq 0$ or $A \neq C$	Ellipse
$B^2 - 4AC = 0$	Parabola
$B^2 - 4AC > 0$	Hyperbola
If $B = 0$, each axis of the conic is horizontal or vertical.	

EXAMPLE 6 Classify a conic

Classify the conic given by $4x^2 + y^2 - 8x - 8 = 0$. Then graph the equation.

Solution

Note that A = 4, B = 0, and C = 1, so the value of the discriminant is:

 $B^2 - 4AC = 0^2 - 4(4)(1) = -16$

Because $B^2 - 4AC < 0$ and $A \neq C$, the conic is an ellipse.

COMPLETE THE SQUARE

For help with completing the square, see p. 284. To graph the ellipse, first complete the square in *x*. $4x^2 + y^2 - 8x - 8 = 0$

 $4x^{2} + y^{2} - 8x - 8 = 0$ $(4x^{2} - 8x) + y^{2} = 8$ $4(x^{2} - 2x) + y^{2} = 8$ $4(x^{2} - 2x + ?) + y^{2} = 8 + 4(?)$ $4(x^{2} - 2x + 1) + y^{2} = 8 + 4(?)$ $4(x - 1)^{2} + y^{2} = 12$ $\frac{(x - 1)^{2}}{3} + \frac{y^{2}}{12} = 1$

From the equation, you can see that (h, k) = (1, 0), $a = \sqrt{12} = 2\sqrt{3}$, and $b = \sqrt{3}$. Use these facts to draw the ellipse.