Write an equation of the conic section.

5. Parabola with vertex at $(3,-1)$ and focus at $(3,2)$
6. Hyperbola with vertices at $(-7,3)$ and $(-1,3)$ and foci at $(-9,3)$ and $(1,3)$

Identify the line(s) of symmetry for the conic section.
7. $\frac{(x-5)^{2}}{64}+\frac{y^{2}}{16}=1$
8. $(x+5)^{2}=8(y-2)$
9. $\frac{(x-1)^{2}}{49}-\frac{(y-2)^{2}}{121}=1$

KEY CONCEPT For Your Notebook

Classifying Conics Using Their Equations

Any conic can be described by a general second-degree equation in x and $y: A x^{2}+B x y+C y^{2}+D x+E y+F=0$. The expression $B^{2}-4 A C$ is the discriminant of the equation and can be used to identify the type of conic.

Discriminant
$B^{2}-4 A C<0, B=0$, and $A=C$
$B^{2}-4 A C<0$ and either $B \neq 0$ or $A \neq C$
$B^{2}-4 A C=0$
$B^{2}-4 A C>0$

Type of Conic

Circle
Ellipse
Parabola
Hyperbola

If $B=0$, each axis of the conic is horizontal or vertical.

EXAMPLE 6 Classify a conic

Classify the conic given by $4 x^{2}+y^{2}-8 x-8=0$. Then graph the equation.

Solution

Note that $A=4, B=0$, and $C=1$, so the value of the discriminant is:

$$
B^{2}-4 A C=0^{2}-4(4)(1)=-16
$$

Because $B^{2}-4 A C<0$ and $A \neq C$, the conic is an ellipse.
To graph the ellipse, first complete the square in x.

$$
\begin{aligned}
4 x^{2}+y^{2}-8 x-8 & =0 \\
\left(4 x^{2}-8 x\right)+y^{2} & =8 \\
4\left(x^{2}-2 x\right)+y^{2} & =8 \\
4\left(x^{2}-2 x+\text { ? }\right)+y^{2} & =8+4(\text { ? }) \\
4\left(x^{2}-2 x+\mathbf{1}\right)+y^{2} & =8+4(\mathbf{1}) \\
4(x-1)^{2}+y^{2} & =12 \\
\frac{(x-1)^{2}}{3}+\frac{y^{2}}{12} & =1
\end{aligned}
$$

From the equation, you can see that $(\boldsymbol{h}, \boldsymbol{k})=(\mathbf{1}, \mathbf{0}), a=\sqrt{12}=2 \sqrt{3}$, and $b=\sqrt{3}$.
Use these facts to draw the ellipse.

