EXAMPLE 4 Write an equation of a translated ellipse

Write an equation of the ellipse with foci at $(1,2)$ and $(7,2)$ and co-vertices at $(4,0)$ and $(4,4)$.

Solution

STEP 1 Determine the form of the equation. First sketch the ellipse. The foci lie on the major axis, so the axis is horizontal. The equation has this form:

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

STEP 2 Identify h and k by finding the center, which is

FIND DISTANCE The co-vertices lie on a vertical line through the center and the foci lie on a horizontal line through the center, so you do not have to use the distance formula. halfway between the foci (or the co-vertices).

$$
(h, k)=\left(\frac{1+7}{2}, \frac{2+2}{2}\right)=(4,2)
$$

STEP 3 Find b, the distance between a co-vertex and the center (4, 2), and c, the distance between a focus and the center. Choose the co-vertex $(4,4)$ and the focus $(1,2): b=|4-2|=2$ and $c=|1-4|=3$.
STEP 4 Find a. For an ellipse, $a^{2}=b^{2}+c^{2}=2^{2}+3^{2}=13$, so $a=\sqrt{13}$.

- The standard form of the equation is $\frac{(x-4)^{2}}{13}+\frac{(y-2)^{2}}{4}=1$.

EXAMPLE 5 Identify symmetries of conic sections

Identify the line(s) of symmetry for each conic section in Examples 1-4.

Solution

For the circle in Example 1, any line through the center $(2,-3)$ is a line of symmetry.

For the parabola in Example 3, $y=3$ is a line of symmetry.

For the hyperbola in Example 2, $x=-1$ and $y=3$ are lines of symmetry.

For the ellipse in Example 4, $x=4$ and $y=2$ are lines of symmetry.

