EXAMPLE 4 Write an equation of a translated ellipse

Write an equation of the ellipse with foci at (1, 2) and (7, 2) and co-vertices at (4, 0) and (4, 4).

Solution

STEP 1 **Determine** the form of the equation. First sketch the ellipse. The foci lie on the major axis, so the axis is horizontal. The equation has this form:

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

STEP 2 Identify *h* and *k* by finding the center, which is halfway between the foci (or the co-vertices).

$$(h, k) = \left(\frac{1+7}{2}, \frac{2+2}{2}\right) = (4, 2)$$

- y (4, 4) (1, 2) (7, 2) 1 1 1 (4, 0) x
- *STEP 3* Find *b*, the distance between a co-vertex and the center (4, 2), and *c*, the distance between a focus and the center. Choose the co-vertex (4, 4) and the focus (1, 2): b = |4 2| = 2 and c = |1 4| = 3.
- **STEP 4** Find *a*. For an ellipse, $a^2 = b^2 + c^2 = 2^2 + 3^2 = 13$, so $a = \sqrt{13}$.
- The standard form of the equation is $\frac{(x-4)^2}{13} + \frac{(y-2)^2}{4} = 1.$

EXAMPLE 5 Identify symmetries of conic sections

Identify the line(s) of symmetry for each conic section in Examples 1-4.

Solution

For the circle in Example 1, any line through the center (2, -3) is a line of symmetry.

For the parabola in Example 3, y = 3 is a line of symmetry.

For the hyperbola in Example 2, x = -1 and y = 3 are lines of symmetry.

	y								
					X :	= 4			
		/							
	1				(4,	2))	
1		y	= 2	-				Γ	
1							\sim		
	1								x
1	1								

For the ellipse in Example 4, x = 4 and y = 2 are lines of symmetry.

FIND DISTANCE The co-vertices lie on

a vertical line through the center and the foci lie on a horizontal line through the center, so you do not have to use the distance formula.