EXAMPLE 2 Graph the equation of a translated hyperbola

$\operatorname{Graph} \frac{(y-3)^{2}}{4}-\frac{(x+1)^{2}}{9}=1$.

Solution

STEP 1 Compare the given equation to the standard forms of equations of

SOLVE FOR Y To plot additional points on the hyperbola, solve for y to obtain
$y=3 \pm 2 \sqrt{1+\frac{(x+1)^{2}}{9}}$. Then make a table of values.
hyperbolas. The equation's form tells you that the graph is a hyperbola with a vertical transverse axis. The center is at $(\boldsymbol{h}, \boldsymbol{k})=(-\mathbf{1}, \mathbf{3})$. Because $a^{2}=4$ and $b^{2}=9$, you know that $a=2$ and $b=3$.

STEP 2 Plot the center, vertices, and foci. The vertices lie $a=2$ units above and below the center, at $(-1,5)$ and $(-1,1)$. Because $c^{2}=a^{2}+b^{2}=13$, the foci lie $c=\sqrt{13} \approx 3.6$ units above and below the center, at $(-1,6.6)$ and $(-1,-0.6)$.

STEP 3 Draw the hyperbola. Draw a rectangle centered at $(-1,3)$ that is $2 a=4$ units high and $2 b=6$ units wide. Draw the asymptotes through the opposite corners of the rectangle. Then draw the hyperbola passing through the vertices and approaching the asymptotes.

[^0]
Guided Practice for Examples 1 and 2

Graph the equation. Identify the important characteristics of the graph.

1. $(x+1)^{2}+(y-3)^{2}=4$
2. $(x-2)^{2}=8(y+3)$
3. $(x+3)^{2}-\frac{(y-4)^{2}}{4}=1$
4. $\frac{(x-2)^{2}}{16}+\frac{(y-1)^{2}}{9}=1$

EXAMPLE 3 Write an equation of a translated parabola

Write an equation of the parabola whose vertex is at $(-2,3)$ and whose focus is at $(-4,3)$.

Solution

STEP 1 Determine the form of the equation. Begin by making a rough sketch of the parabola. Because the focus is to the left of the vertex, the parabola opens to the left, and its equation has the form $(y-k)^{2}=4 p(x-h)$ where $p<0$.

STEP 2 Identify h and k. The vertex is at ($-2,3$), so $h=-2$ and $k=3$.

STEP 3 Find p. The vertex $(-2,3)$ and focus $(-4,3)$ both
 lie on the line $y=3$, so the distance between them is $|p|=|-4-(-2)|=2$, and thus $p= \pm 2$. Because $p<0$, it follows that $p=-2$, so $4 p=-8$.

The standard form of the equation is $(y-3)^{2}=-8(x+2)$.

[^0]: AnimatedAlgebra
 at classzone.com

