9.6 Translate and Classify Conic Sections
 2A.5.A, 2A.5.B, 2A.5.D, 2A.5.E

Before
Now
Why?

You graphed and wrote equations of conic sections.
You will translate conic sections.
So you can model motion, as in Ex. 49.

Key Vocabulary

- conic sections (conics)
- general seconddegree equation
- discriminant

Because parabolas, circles, ellipses, and hyperbolas are formed when a plane intersects a double-napped cone, they are called conic sections or conics.

Previously, you studied equations of parabolas with vertices at the origin and equations of circles, ellipses, and hyperbolas with centers at the origin. Now you will study how translating conics in the coordinate plane affects their equations.

KEY CONCEPT
 For Your Notebook

Standard Form of Equations of Translated Conics

In the following equations, the point (h, k) is the vertex of the parabola and the center of the other conics.
Circle

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Horizontal axis

Parabola

$$
(y-k)^{2}=4 p(x-h)
$$

$$
(x-h)^{2}=4 p(y-k)
$$

Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Vertical axis

$(x-h)^{2}=4 p(y-k)$

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

$\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1$
Hyperbola

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

EXAMPLE 1 Graph the equation of a translated circle

Graph $(x-2)^{2}+(y+3)^{2}=9$.

Solution

STEP 1 Compare the given equation to the standard form of an equation of a circle. You can see that the graph is a circle with center at $(h, k)=(2,-3)$ and radius $r=\sqrt{9}=3$.
STEP 2 Plot the center. Then plot several points that are each 3 units from the center:

$$
\begin{array}{ll}
(2+3,-3)=(5,-3) & (2-3,-3)=(-1,-3) \\
(2,-3+3)=(2,0) & (2,-3-3)=(2,-6)
\end{array}
$$

STEP 3 Draw a circle through the points.

